
1 | P a g e

ELEC40006-Electronics Design Project 1

2019-2020

CPU Design – SEGFAULT

Report for

Dr. Edward Stott and Mrs. Esther Perea

Alexander Pondaven, CID 01730117, Undergraduate Electrical and

electronic engineering

 Shuanghua Liu, CID 01729607, Undergraduate Electrical and

electronic engineering

 Yuliang Zhu, CID 01771679 Undergraduate Electrical and electronic

engineering

Word count: 8305

Submitted June 2020

2 | P a g e

Contents
1 Abstract .. 3

2 Introduction ... 3

3 Project Planning and Management ... 3

4 Design Criteria .. 5

5 Outline of technical problem ... 7

6 Design Process ... 7

6.1 Overview of design ... 7

6.2 Instruction Set Architecture (ISA) choice explanation .. 12

6.3 ISA format ... 14

6.4 Instruction Hardware Implementation ... 18

6.5 Multiplication method research ... 24

7 Benchmark tests... 32

7.1 Benchmark: Fibonacci numbers using recursion .. 32

7.2 Benchmark: Pseudo-random integers with LCG ... 36

7.3 Benchmark: Traverse linked list to find an item ... 39

8 Optimisation... 43

8.1 Basic CPU evaluation ... 43

8.2 Choosing the multiplier ... 45

8.3 Pipelining ... 46

9 Conclusion/Extension... 53

10 Link to Github ... 54

11 References ... 55

12 Appendix .. 56

3 | P a g e

1 Abstract
This report presents in detail how a Central Processing Unit has been built to meet certain

benchmarks and design goals. The CPU was based on an invented instruction set architecture

and took advantage of the Harvard Architecture philosophy, while building off the work done

with ARMish in term two. In this report, a clear explanation of the hardware implementation

has been done including analysis of how individual instructions control hardware. The report

also includes the optimisation process, where pipelining, latency/propagation delay and the

trade-off between speed, power, and area have been discussed.

2 Introduction
The CPU is the core of a computer and plays a paramount role in electronic engineering. The

primary objective was to build a CPU that could do the benchmarks (Calculating Fibonacci

numbers, pseudo-random integers with a linear congruential generator and traverse a linked

list), while remaining general (Turing complete). Hence research on different ISAs like AVR,

MIPS, SPARC, and ARM, as well as the Harvard Architecture was conducted. Some instructions

were specifically developed for the benchmarks like multiply, subroutines, and stacks. After

deciding upon a 12 instruction ISA to meet the benchmark requirements, the separate

hardware blocks were decided. The CPU’s hardware took inspiration from the ARMish CPU

built in term two, as it had a register file and ALU to carry out calculations. After implementing

all instructions with hardware, the CPU was optimised to maximise power, speed, and area.

This was done through pipelining, parallel computation, and analysis of different multipliers.

3 Project Planning and Management

Before starting the project, the Belbin Inventory had been completed to find out the different

roles of team members. There was an implementer who is practical, reliable, efficient, hard-

working, and methodical. It helped to have a shaper who is energetic, driven, and bold. The

final person was a resource investigator who is outgoing and a great motivator. The task was

split into three main tasks for each member, with all team members having a general

understanding of the CPU. One person implemented the hardware and tested instructions.

4 | P a g e

The second person had done research on the multiplier and hardware components. The last

person helped write the test code for the benchmarks and implement the CPU. On 8th June,

all the general instructions with associated hardware had been completed and tested. On

10th June, all three benchmarks had been completed and tested. On 12th June, the CPU had

been optimised to achieve a better frequency. A regular meeting pattern had been used. All

team members met every day since 24th May at 10:00 BST on Microsoft Teams to discuss

progress and distribute tasks for the day. The TODO list website, Trello, and One Note were

used to make share notes throughout the project. Some screen shots of the meeting plans

and to do lists are in Appendix 3.

Snippet of team notes:

Date Discussion Alex Peter Jason

26/6 • Discussed Jason's assembly
code for fib benchmark

• Went over stacks
• Discussed number of registers

and instruction format
o Decided it is best to

decide this once all
benchmarks have been
turned into assembly
and we know what
instructions will be
needed

Look at next
benchmarks and see
what instructions we
may need and
convert to assembly

Research
multiplication
methods

Make
assembly more
efficient and
think of
register to use

27/5 • Went over assembly code for
LCG and linked list
benchmarks

• Discussed multiplication
methods

• Made a list of instructions
using benchmarks

Think of
implementation of
instructions (DECA
oral as well)

Continue
multiplication
method
research

Reduce
number of
instructions
used in fib

5 | P a g e

4 Design Criteria
The CPU should be able to run the following three benchmarks.

Calculate Fibonacci numbers using recursion

 Calculate pseudo-random integers with a linear congruential

generator (LCG)

Traverse a linked list to find an item

6 | P a g e

Software requirements specification:

Functional requirements:

- Benchmark tests:

o Fibonacci test and recursion

▪ Stack

▪ Stack pointer

o LCG

▪ Multiplication

o Traverse linked list and find item

▪ Indirect addressing

- Correctness

o Use benchmark algorithms to check using trial data

o Compare with hand-calculated results

- Speed - minimise geometric mean time (T1T2T3)^(⅓)

o Found by counting number of CPU cycles required for each benchmark and

how this changed with size of problem (e.g. size of list)

o Find max clock speed of design and minimum execution time

- Power consumed - minimise number of logic gates

o Number of logic gates and clock speed

Non-functional requirements:

- Greatest number of applications for least number of transistors

- 16-bit instruction word

- At least 2k words of instructions and 2k words of data

- Built and simulated using Quartus

7 | P a g e

5 Outline of technical problem
Technical Problem: Build a general CPU that can complete the given benchmarks.

The CPU was not a task to create a hyper specialised instruction set that only implements the

benchmarks in the most efficient way and does nothing else. It also required the CPU to be

Turing complete, which involve implementing indirect or register addressing of memory,

computed jump (jump with register value), and loading current value of PC into a register or

memory. Each benchmark also required specific instructions and hardware to be

implemented, including subroutines, multiplication, and the stack.

6 Design Process

6.1 Overview of design
Memory

The memory blocks took inspiration from the Harvard architecture philosophy1. This involved

separated the memory into an instruction ROM, where the main program was stored, and a

data RAM, where all the data was stored. The different memory types could then be

addressed differently. This was useful for implementing indirect addressing and a pointer to

the stack (a section in the data RAM), as the ALU can output the correct data address for each

cycle depending on the instruction. The instructions and data could also be accessed

simultaneously, which was very useful for pipelining, as the next instruction can be fetched

at the same time as reading or writing from the data memory.

The instruction memory could be either a ROM or RAM as the CPU never needs to write to

this memory block. The two types of memory both simulate pretty much identically in Quartus.

The ROM was used as it looked cleaner without all the extra write outputs for RAM (see

Appendix 9 for more detail on decision).

The size of both memory blocks were 4096 16-bit words. As the opcode was 4 bits, one

instruction (LDI) could use the rest of the bits to load a 12-bit constant that could be used as

an address for all 4096 locations in the memory blocks. This was useful for testing.

1 Scott Thornton,"What's the difference between Von-Neumann and Harvard architectures" March
8th 2018 [online]MICROCONTROLLERTIPS available at:
<https://www.microcontrollertips.com/difference-between-von-neumann-and-harvard-
architectures/>

https://www.microcontrollertips.com/difference-between-von-neumann-and-harvard-architectures/
https://www.microcontrollertips.com/difference-between-von-neumann-and-harvard-architectures/

8 | P a g e

Register file

The register file included 8 registers. This required a 3-bit port addresses to select which

register to read from or write to. Using 16 registers would have required 4 bits, which would

take much more space in the instruction words, and many registers would not be used for the

benchmarks given. This register file took inspiration from the ARMish CPU register file built in

the second term, although register files are common for most CPUs.

9 | P a g e

ALU with register file (file called ALU1)

Like ARMish, the ALU was able to read from two registers in the register file, addressed using

bits in the instruction word. The ALU implemented the decoder for all the signals and could

do calculations on the two registers that were read. It handled all the logic and was

implemented in Verilog (full ALU in Appendix 1).

State machine (unpipelined)

The synchronous state machine controlled what state the CPU was in.

The unpipelined state machine just switched between the execute (EXEC1) cycle and the

FETCH cycle as a new instruction is fetched every second cycle. This made it easier to pipeline

the CPU as all logic was already carried out during EXEC1. The states were numbered as above,

so the next state was just the inverse of the current state.

10 | P a g e

Decoder:

Originally, the decoder for control signals was separate from the ALU, although most logic

signals were in the ALU, so many output and inputs needed to be created to leave different

BSF files, which increased the time it took to test. This was simplified by moving the state

machine into the regfile_ALU BDF and decoder logic was put into the ALU.

11 | P a g e

Original decoder:

CPU block

This block made the connections between the regfile_alu block, the program counter and the

memory. The program counter (PC) addressed the instruction memory, while the address for

the data memory came from the ALU. The MUX at the data input of the PC switched between

loading the PC with the value of the second register that was read for jump instructions and

the least significant 12 bits of the instruction for branch instructions (discussed in the next

section).

12 | P a g e

6.2 Instruction Set Architecture (ISA) choice explanation
The instructions were chosen to meet the requirements of the benchmarks and to create a

general CPU. Given the word length of 16 bits, there was a limitation to how many bit fields

could fit into the instruction. The register file contained 8 registers, which required a register

address of 3 bits to select one of them. Therefore, two-operand instructions were used as it

only took 6 bits of the instruction to select the two registers to read/write to. Three-operand

instructions would be too large as they would require 9 bits and only 7 bits would be left for

the opcode and other bit fields.

To decide upon the instructions required, the benchmark codes were first converted into a

first draft of assembly code, so that the required instructions could be found.

ISA:

LDI Load a 12-bit constant into R0

LDR Load value from memory into a register

STR Store value from register into memory

MOV Move shifted value of one register to another

JMP Jump to an address depending on a condition

ADD Add two register values

SUB Subtract two register values

MUL 16-bit multiplication of two register values stored in separate output registers

BL Branch and link

LDMFD POP - Load value from stack and increase stack pointer

STMFD PUSH - Store value into stack and decrease stack pointer

STP Stops the program

LDI: It was useful to load a 12-bit address into a register to be able to address all 4096

locations in memory. Due to the 16-bit word limit, LDI only worked for one instruction

LDR, STR: These instructions took inspiration from ARM, and were both used to implement

register addressing. This is needed for the “find in list” benchmark.

13 | P a g e

MOV: Just like in ARM, the MOV instruction also carried out different shifts on the register

value. While this was not specifically required for the benchmarks to work, it is a very useful

function for general CPUs to have.

JMP: Jump was required for all benchmarks to implement loops in assembly code. The

benchmarks also required conditional jumps, which were implemented using a condition field

in the instruction that determines what condition needs to be met for the jump to work.

ADD, SUB: Based off ARMish.

MUL: Multiplication was required for the pseudo random number generator. This was

implemented with a separate multiplier block, which both allowed the team to work in

parallel, and for the ALU to carry out instructions at the same time as the multiplication is

occurring.

BL: Branch and link2 implemented subroutines, and were based off ARM. This involved having

a link register (register 6) that stored the next address and then jumped to the address of the

subroutine in the instruction word. When this subroutine (like a function in a separate part of

the memory) was finished, it jumped to the value in the link register to return to where it left

off in the main program. This instruction was useful when implementing the recursive

Fibonacci benchmark test as it needed to call the Fibonacci function multiple times and

needed to return to where it left off.

LDMFD/STMFD (POP/PUSH): These instructions implement the stack that is required for the

Fibonacci benchmark. The stack was a section of the data memory addressed by a stack

pointer. The stack pointer (register 7) decreased for POPs and increased for PUSHes. This took

inspiration from the AVR ISA3. Each of these instructions needed to be called three times to

pop/push the value of the link register, and the two local variables (M for multiple). The FD

stands for full descending as the stack starts at the end of the data memory. This prevented

the need to initialise the stack pointer at a particular address and run the risk of it exceeding

0xFFFF. Instead, the stack starts at 0xFFFF and descends when adding new items to the stack.

2 Clarke, T. Class Lecture, Topic "LEC9.pdf", Department Of Electrical & Electronic Engineering,
Imperial College London, UK,2020. Available at:
<https://intranet.ee.ic.ac.uk/t.clarke/arch/html16/lect16/lec9.pdf>
3 http://ww1.microchip.com/downloads/en/DeviceDoc/doc2503.pdf

https://intranet.ee.ic.ac.uk/t.clarke/arch/html16/lect16/lec9.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/doc2503.pdf

14 | P a g e

 6.3 ISA format
The decided ISA format took some inspiration from the ARM Thumb ISA4, due to the 16-bit

word length. It helped make decisions on how many bits are needed for each field and how

to reduce the instruction set.

ISA Table:

Note: Rd= destination register, Rs = source register

Descriptions:

LDI would load a constant to Register 0. It would read the operand (12 bits) to store the

integer to the register. Being able to load a 12 bits constant would allow the CPU to load any

address number to the register, and thus it could jump to any address in the memory. The

opcode of LDI is 0000, so this helped address directly to R0 by letting port address in the

register file read from the opcode.

4 ARM QRC 0006E, Thumb 16-bit Instruction Set Qucik Reference Card [online] available at:
<http://infocenter.arm.com/help/topic/com.arm.doc.qrc0006e/QRC0006_UAL16.pdf>

http://infocenter.arm.com/help/topic/com.arm.doc.qrc0006e/QRC0006_UAL16.pdf

15 | P a g e

LDR would load a value stored in the memory to one of the registers. Rs bits [2:0] was the

address of the register which stored the address of the value to be loaded to another register.

Rd bits [5:3] was the address of the register where the value should be moved to. OFFSET bits

[10:6] would provide a positive or negative offset to the value in the Rs depending on the S

bit. Sign bit (S) [11] would define the direction of the offset: 0 would be positive offset, 1

would be negative offset.

In order to do that, the value stored in the memory first need to be loaded into R0 using LDI.

The offset function helped the CPU implement register addressing for the “Finding in linked

list” benchmark, since it could load the next location of the value where the address of the

next item is stored.

The problem is that the LDR would require two cycles, one for the retrieving the data from

RAM, one for writing back the value to the register. This was solved using the same state

machine by allowing instructions to be completed in parallel (See Hardware descriptions in

next section).

 STR was implemented in the same way as LDR except instead of loading a register with a

memory address, STR stores the register value into the memory address given by mem[Rs ±

Offset]. This was not required for the benchmark but helped generalise the CPU.

MOV would move the value from Rs to Rd while also doing optionally shifting the value. Rs

bits [2:0] was the register which stored the value to be moved. Rd bits[5:3] was the register

where the value should be moved to.

16 | P a g e

Shift type:

00: no shift

01: shift left

10: shift right

11: move multiply registers

CIN field:

00: cin=0

01: cin=1

10: cin = carrystatus (previous carry)

11: cin = CMSB (carry most significant bit of Rs)

The Move multiply registers option was added later with multiplication as the product is

stored in two separate registers from the register file, so these instructions were necessary

to move them to the register file. Only one MOV instruction was required after multiplying

for the LCG as only the least significant 16 bits are required. Although, general multiplication

with the full 32-bit product is possible.

JMP would change the address in the program counter under different condition. Rs bits [2:0]

was the register which stored the address the program counter should jump to. Rd bits [5:3]

was the register which stored the value to be compared with the comparator. Comparator

bits [9:6] was the value to be compared with the value in Rd.

COND field [11:10]

00: JMP (always)

01: JEQ (jump if equal) Rd==comparator

10: JMI (jump if less than) Rd < comparator

11: JMB (jump if bigger than) Rd > comparator

17 | P a g e

ADD/SUB would add/subtract the value in Rd and Rs and store the result back to Rd. Rs bits

[2:0] was the register which stored one of the number for addition. Rd bits [5:3] was the

register which stored one of the number for addition and the register the result would be

stored in. Bits [8:6] are reserved for future features. CWEN bit [9] would enable writing the

result to the carry register. CIN is added to the result. Note that normal subtraction required

CIN=1 as the conversion to 2’s complement of Rs required an inversion and addition of 1.

 MUL carried out 16-bit multiplication between Rd and Rs and stored the product in 2 output

registers after the multiplier block.

LDMFD/POP would load the value stored in the stack area back to the register. Bits [2:0] was

the location of the stack register (R7). Rd bits [5:3] was the register where the value should

be restored to. Bits [11:6] were not needed.

The process of this instruction is

Rd = Mem[Stack Pointer]

Stack Pointer = Stack Pointer + 1

STMFD would store the value in the register to the stack area. Rd bits [2:0] was the register

stored the value to be preserved. Bits [5:3] was the location of the stack register (R7). Bits

[11:6] were not used. The location of 111 was flipped as it made the logic easier.

The process of this instruction is:

Stack Pointer = Stack Pointer - 1

18 | P a g e

Mem[Stack Pointer] = Rd

The reason why stack pointer would decrement by one first is that the stack register would

initialise to be 0, and minus one would let it be 0xFFFF which pointed to the end of the

memory.

STP function would stop the whole program (prevent the program counter from counting).

6.4 Instruction Hardware Implementation

LDI, ADD, SUB, and STP were implemented like ARMish

Input to register file

The series of MUXes selected the input of port1addr[2:0] (to address the register to write to)

depending on the instruction. The possible inputs included instr[5:3] to address Rd, instr[2:0]

for selecting register 7 for the pop instruction, 3’b000 for LDI, 3’b110 (register 6) for writing

into the link register in BL, and write_next_status[2:0], which is used for LDR (described

19 | P a g e

below). The MUXes at the input of din (data in of register file) also switched between either

data from the RAM (din[15:0]), the instruction word (instr[15:0]), or the output of the ALU

(aluout[15:0]). See appendix 1 for ALU logic for control signals.

Output of ALU

The carry flip-flop bits carryout, carryen, and carrystatus were implemented using the ARMish

design. The other register is used for LDR instructions as explained below.

LDR hardware implementation

LDR required two cycles: one for reading a value from the RAM, and one for writing data out

of the RAM into the register file. This meant that data in (din) of the register file is only

updated one cycle after the LDR instruction, so port1addr needs to be correct one cycle

afterwards, as well as write enable (wen). A register called write_next was added at the ouput

of the ALU that stores “write_next_flag” (telling the next instruction that the data is now at

dout during the next cycle and can enable writing) and the address of Rd given by bits [5:3] of

the LDR instruction. This register was enabled every execute cycle.

20 | P a g e

This implementation allowed other instructions to be carried out in parallel with this second

cycle for LDR, given that the following instruction does not write to the registers or read from

the register being written to by LDR (as it has not updated yet). To prevent the CPU from

bugging if the next instruction was a write instruction, the write_next_stp bit stops PC from

counting during this second LDR instruction to allow it to finish before the next instruction

executes. This acted like a delay to the system and allows the assembly to have any instruction

after LDR as the ALU decides if the PC waits for LDR to finish or if the next instruction can be

done in parallel. Note that LDR instructions could be executed after each other and be done

in parallel as the first cycle of LDR just involved the data RAM. An XOR gate between the write

enable out (wenout) of the ALU and the write_next_flag from the write_next register

determined if the register is written or not (as these two bits should not be on at the same

time).

LDR instructions after each other

Data memory:
0x0004
0x0002
0x00AB

Instruction mem:

LDI 0x1 0001

LDR 0 0 R1 R0 1008

LDR 0 0 R2 R0 1010

LDR 0 0 R3 R2 101A

STP B000

Simulation:

21 | P a g e

In the simulation multiple LDR instructions could be executed consecutively after each other

as the output of a register updated every EXEC1 clock edge.

Indirect addressing (LDR and STR)

Indirect addressing was achieved by calculating the offset address into alusum and storing

this as the data address (daddr) as seen above. The offset address was calculated using the

parameters specified in the instruction word. This was used in both LDR and STR to specify

the address for the RAM.

MOV

The move instruction was implemented similarly to ARMish together with the shift

functionality inside the ALU using alusum.

22 | P a g e

The option of no shift also could add cin, so this was a quick way of moving a register and

adding one simultaneously. When instr[7:6]=11, the mov instruction output either the least

significant 16 bits (LS_prod) or the most significant 16 bits (MS_prod) of the multiplication

result depending on whether Rs is 0 (moves LS_prod) or 1 (moves MS_prod). LCG only used

the Rs=0 option, as only LS_prod is required. Alusum is directed back into the data in of the

register file to be written into the register specified by port1addr.

JMP:

On the other hand, jump was implemented with a wire, jmp_cond, that determined if the PC

should load the address of Rs depending on the conditions given in the opcode and by the

comparisons made (eq and mi). Jmp_cond enables PC loading and stops it from counting.

MUL:

Refer to multiplication method research for information about the Booth Radix 4 multiplier

that was used.

Hardware in regfile_alu bdf:

23 | P a g e

The left-hand registers were used to store the values read from the two registers in the

register file specified in the instruction word. This was necessary as these multiplicands

needed to be constant throughout the entire 9 cycles that it takes this multiplier to carry out

the multiplication. When the MUL instruction started, the mul_start control signal was

asserted, getting stored in a DFF, so that in the next cycle, the multiplication can start in the

multwithRadix4 block. When it was done, the mul_finish signal was activated, which enabled

writing to the output registers, where the 32-bit product was stored. As discussed previously,

the MOV instruction had an option to store this product into the register file. This could not

be done with the MUL instruction as there was no space in the instruction word to include

output registers.

In the alusum calculation, add and multiply was incorporated into this design, so that the

multiply product gets added onto what is already in the destination register. This allowed it

to first move “b” into the register in the LCG benchmark and then move the product into the

same register, where it automatically adds the “b”. Therefore, an additional ADD instruction

was not needed.

BL: Branch and Link

The link register was stored with “PC+1” and the port1addr selects 6 the MUX described at

the beginning of the section.

When the MUX at the data in of PC was asserted, it selects the least significant 12 bits of the

instruction to be loaded into the PC. This carried out the jump from the instruction word

rather than from a register for JMP instructions.

LDMFD(POP)/STMFD(PUSH)

LDMFD (pop) writes the new value into the stack pointer (subtracted by 1) while using the old

value as the data address. STMFD (push) writes the new value into the stack pointer (added

by 1) while using the new value as the data address. This logic was reflected in the daddr wire

seen below. The stack pointer, R7 was selected at port1addr using a MUX (either from Rs or

Rd – refer to ISA table).

24 | P a g e

All tests for instructions found in Appendix 13

6.5 Multiplication method research

Multipliers are important in CPU design, as they have long latency and consume relatively

considerable power. A system's performance largely depends on multipliers because the

multipliers are one of the slowest element within the system. In this section, a few ways of

implementing the multipliers have been introduced and the strength and drawback of each

implementation is discussed. In real life, the most important thing about multipliers is power,

the power consumption of multipliers need to be controlled as low as possible, and proper

cooling system need to be designed to remove the heat generate from the multiplier.

However, in this project, the improvement in fundamental arithmetic functionality and speed

of the multiplier can outweigh the increased power usage. Below is a table that shows

multiplication in math perspective.

Multiplication table

Multiplying A(N-bits) and B(M-bits) resulted in M*N bits

25 | P a g e

A shift and add multiplier architecture is demonstrated in Figure 3. The inputs include a start

signal, clock, and multiplicand. It used the shift and add method to output the result with a

stop signal.

Figure 35

These multipliers are simple and take up little area. Higher radix multipliers are quicker,

although there is a higher power usage due to the larger register use and more complicated

5 Deepak Bordiya, and Lalit Bandil, "Comparative Analysis Of Multipliers" International Journal of
Engineering Research & Technology. Volume 2 Issue 9, September - 2013, pp. 1437– 1441. Accessed
on: 8 June 2020. [Online]. Available at: <https://www.ijert.org/research/comparative-analysis-of-
multipliers-serial-and-parallel-with-radix-based-on-booth-algoritham-IJERTV2IS90625.pdf>

https://www.ijert.org/research/comparative-analysis-of-multipliers-serial-and-parallel-with-radix-based-on-booth-algoritham-IJERTV2IS90625.pdf
https://www.ijert.org/research/comparative-analysis-of-multipliers-serial-and-parallel-with-radix-based-on-booth-algoritham-IJERTV2IS90625.pdf

26 | P a g e

logic. Implementing the example above using Verilog, a time analysis could be run to find out

the propagation delay. If the multiplier with full-adder and logic gate was implemented, it

would contain many adders and logic gate. The logic is the same with the multiplication table,

each individual bit of the product came from multiple addition. The exact number of additions

depends on the bit number.

Figuer 4 http://www.ellab.physics.upatras.gr/~bakalis/Eudoxus/CSAM.html

This image illustrates a hardware implementation for an 8 * 8-bit combinational multiplier, if

N is the bits of the multiplicand, the delay should be 2N times the delay of the full adder.

http://www.ellab.physics.upatras.gr/~bakalis/Eudoxus/CSAM.html

27 | P a g e

The implementation could be done in Verilog, although this would be the function already

implemented in Figure 5.

Figure 5 6

Using the FPGA shown in Figure 6, the propagation delay would be around 10ns.

Figure 6 6

6 Gim P. Hom, Joe Steinmyer, Class Lecture, Topic: “Arithmetic Circuits & Multipliers” 6.111
Introductory Digital Systems Laboratory, Massachusetts Institute of Technology, MA, Fall,
2017.Avaiable at: <http://web.mit.edu/6.111/www/f2017/handouts/L08.pdf>

http://web.mit.edu/6.111/www/f2017/handouts/L08.pdf

28 | P a g e

Multiplier Type II Sequential Multiplier

Figure 7

After the combinational multiplier, the sequential multiplier (Figure 7) was also commonly

used in early hardware design. It only contains one full adder, four registers in total. A stored

a M-bits multiplier, B store a N-bits multiplicand, P is N bit register and C is a single bit register.

P and C had initial value of 0. To illustrate the multiple process, an example of 11*11 has

been done in Figure 8.

Figure 8

29 | P a g e

It was doing implicit shifting and adding operation, where P/B are shifting registers, they

always shifted right by one each cycle. The mathematical explanation is shown in Figure 9.

The shifting operation is determined if shifting and adding both needed to be done or just

shifting. The addition step is added at the MSB side, which means adding multiplicand*2^N,

N is the number of bits of the multiplier. However, at the end of the multiplication, the value

stored in P/B is shifted to right by N bits. The shifting cancels out the effect of adding to the

MSB.

Figure 9

Multiplier Type III: Multiplier with Radix 4 and Radix 8.

The radix determines the addition choices in this case. In radix 2 multiplier, the only choice of

addition was to add the multiplicand or not add the multiplicand. In radix 4, the choice for

addition was not only 1 or 0 but 2*multiplicand and 3*multiplicand. In radix 8 the choices are

even more. In radix 2 multiplier 16 additions need to be done for 16 bits multiplication, but

with radix 4, only 8 additions need to be done and with Radix 8 it is 4 addition. Normally each

addition takes one cycle, hence the number of cycles required could be reduced by increasing

the Radix.

For Radix 4 multiplier, Figure 10 in Appendix, the shifting and adding method has also been

used, the multiple of the multiplicand have been pre-computed before the additions. Instead

30 | P a g e

of shifting one bit to the right per cycle, 2 bits were shifted in Radix4 multiplier. The product

of this 2 bits number and the multiplicand was added to with the product registers which is

the left side to the register B, however it was shifted to the LSB at the end of the multiplication.

So, the MSB partial product was not shifted because it is added at the end without any further

shifting. Comparing to the normal Radix 2 multiplier, the Radix 4 take 9 additions, one of them

was pre-computing the multiple of the multiplicand, it was more efficient than Radix2, the

detailed tests regard to latency and power have been discussed in the optimisation section.

In theory, higher radix multipliers have more power consumption and lower latency.

The waveform simulation has proved that the cycles required for multiplication have been
reduced. Figure 11.

Figure 11

Radix 8 multiplier has the similar structure, Figure 11, but instead of shifting 2 bits, 4 bits were

shifted. Therefore, the number of additions had been reduced further.

For the Radix 8 multiplier, more values needed to be pre-computed before the multiplication.

However, the multiplication itself only took 4 additions. From the waveform simulation,

Figure 12, the result would be available after 4 cycles, however the total number of additions

of the Radix8 multiplier were 15 additions in total including 11 pre-computing additions.

Clearly Radix 8 multipliers have larger propagation delay due to larger number of additions at

the start compared to Radix 4 multipliers.

31 | P a g e

Figure 12

To conclude, higher radix multiplier meant less additions during the multiplication, but more

pre-computed values were required. In this case, radix 8 multiplier need to do 6 more

additions for one multiplication compared to radix 4 multiplier. For a 16bits or 32bits word,

Radix 4 multiplier would be efficient enough. The radix of the multiplier should be chosen

according to the bit length of operands. For the combinational multiplier, it used the most

adders but could compute the result with less cycles, and the propagation delay problem

could be solved by changing the intermediate adders to be carry save adders, so the carry

would be saved instead of added. This would reduce the propagation delay of adding the carry.

The final adding stage of the combinational multiplier would involve adding the carries. For

the sequential multiplier, it could not be improved and had to take 16 cycles, but it only

needed one full adder to do the multiplication.

32 | P a g e

7 Benchmark tests

7.1 Benchmark: Fibonacci numbers using recursion
Assembly:

Explanation:
Phase One: Calling

Loading the parameter n in to R1, and call the Fibonacci function.

33 | P a g e

Phase Two: Initializing variable y
Assigning local variable y to R2 by letting R2 = 0.

Phase Three: IF statement
Comparing whether n is bigger than one.

Phase Four: NOT Bigger
Assigning variable y to 1 by letting R2 = 1
Jump to the END phase

Phase Five: Bigger
Store all the values in this call to stack and call the Fibonacci (n-1)
Restore all the values and move the value in the return register(R5) to variable y (R2)
Store all the values in this call to stack again and call the Fibonacci (n-2)
Restore all the values and adding the values in the return register and variable y, and storing
the result back to variable y.
Jump to END phase

Phase Six: END
Move the value of variable y (R2) to the return register (R5)
Jump to the address stored in the link register

Testing:

Fib(2)

107 cycles

The final value of R5 (the return register) was 2, which was correct for fib(2)=2.

34 | P a g e

First section of Fib(2)

The stack pointer R7 could clearly be seen decrementing as values are pushed into the stack

in the screenshot above. R6 also updates as the link register.

FIB(5)=8
12.23 us (using 20 ns period clock) = 611 cycles

See Appendix 10 for Fib simulations from fib(2) to fib(7).

35 | P a g e

Relationship between execution time (using 20 ns period clock) and parameter

As the parameter was increased, the execution time increased exponentially. This was due to

the use of a recursive implementation of the Fibonacci function, which required even more

calls to itself as the parameter increases. This was an especially inefficient implementation of

the function, and it would be interesting to see how a different implementation could be used

to decrease execution time.

36 | P a g e

7.2 Benchmark: Pseudo-random integers with LCG

Using linear congruential generator is one of the ways to generate pseudo- random integer,

it takes three parameters a,b,N and one seed value Xn to generate the next value. The

sequence generated by the generator is called a linear congruential sequence. The target of

this research is to choose the suitable parameters that generate the longest sequence without

repeating, so the sequence looks random. Figure LCG shows three examples with fixed

sequence cycle.

Wikipedia diagram7

Firstly, the generator took a seed input which means the output is related with the input,

hence the largest possible length of the sequence is 2^N. In this case, N was fixed at 16 as it

is the word length. Ideally the maximum length of the sequence is 65536.

The first case is b= 0, a is a primitive element of 2^16, and assume 2^N is a prime number.

The length of the sequence without repeating would be 2^16-1=65535. This special case is

called “Lehmer random number generator”. However, 2^N is not a prime number, so this is

not a possible case. When b=0, 2^N is a power of 2, these parameters are commonly used

because it is convenient for binary representation. This form has maximum sequence length

of 2^N/4 when a=3 or a=5 and the initial seed input Xn is odd. The final case is when b does

not equal zero.

7 Wikipedia, Linear Congruential generator.[online] available at:

<https://en.wikipedia.org/wiki/Linear_congruential_generator>

https://en.wikipedia.org/wiki/Linear_congruential_generator

37 | P a g e

According to Hull-Dobell Theorem8, if

1. b and 2^N are relative prime,

2. a-1 is divisible by all prime factor of 2^N

3.a-1 is divisible by 4 if 2^N is divisible by 4

The period of the sequence is equal to 2^N.

Therefore, for this implementation if b=1, a=2^15+1=32769, N=16, in theory the sequence

would have a length of 65536, which is much too large for the execution time of the Quartus

simulation

Assembly:

8 Linear Congruential Generator I section two, Cornell Department of Mathematics. [online]

available at:
<http://pi.math.cornell.edu/~mec/Winter2009/Luo/Linear%20Congruential%20Generator/linear%2
0congruential%20gen1.html>

http://pi.math.cornell.edu/~mec/Winter2009/Luo/Linear%20Congruential%20Generator/linear%20congruential%20gen1.html
http://pi.math.cornell.edu/~mec/Winter2009/Luo/Linear%20Congruential%20Generator/linear%20congruential%20gen1.html

38 | P a g e

The value stored in R0 is initialised with 0. Firstly, load R1 with 25385 as the "a" value, load

R2 with 3 as the "b" value, load R3 with 8 as the "n" value. R4 stores "y" value, R5 stores "sum"

value. "Y" and "sum" are initialised with 0 as well. Then write the stop address to R0, compare

the value 0 and the “n” value stores in R3, if they are equal, jump to the END ‘address

otherwise R4 multiplies with R1, the “y” and the “a” value. During the multiplication, write

value 1 to R0. Once the multiplication is done, the least significant 16 bits have been stored

in R4. Then the value stores in R5 is added with R4 which represent adding y value to the sum.

After that, the n value is subtracted by 1 and jump back to the start of the loop where the

comparison between n value and 0 has been done. The loop continues and at the end of each

loop n value is subtracted by 1. Once the n value is one, the conditional jump will jump to the

stop address and the test code for pseudo random integer has finished. The final random

integer is stored at R5.

Testing:

Using "typical" parameters in overview
A=25385=0x6329, b=3, n=8
213 cycles
Execution time: 4.27 us
Pattern: 0, 3, 10625, 34994, 47758, 51917, 49639, 25364, 39500 (does not seem to repeat)

The outputs were changed to the radix unsigned integer to read the values more easily.

39 | P a g e

Even when increasing the length of the loop, the integers never seemed to repeat due to the

small execution time of the Quartus simulation.

Execution time scaled linearly as the length of the for loop increased, as the for loop just

executed the corresponding number of times, where each loop required the same amount of

time.

7.3 Benchmark: Traverse linked list to find an item
Assembly:

Note that to change the x value (value being searched for in the list), the first instruction

needed to be changed to this x value. The above code looked for the number 7 in the list.

First the target value is loaded in R0 and stored in R1 in the next instruction, then load R0 with

the beginning address of the loop and stores the address in R3 in the next instruction. After

that load R0 with the end address of the loop and store the end address in R4 in the next

instruction. After all the initialisation, R0 is loaded with the head pointer which contain the

address of the first value, the value is compared with the target value by subtraction method.

If it is the target value, jump to the end address and stored the pointer in R5, the test is

finished. If it is not the target value, loading R0 with pointer pointing to the next value in the

list and jump back to the beginning of the loop, this loop will stop when it iterates through

the whole list or when the target value has been found. NULL was defined as the memory

40 | P a g e

address 0. The item was found if R5 (register 5) returns the address of the item with value x.

If it remains at 0, the item was not found in the list.

Data memory:

This test data was used for the simulations (the list continues on the right side). One item in

the linked list consisted of the value of the item and the value in the next memory address is

the memory address pointing to the next item in the linked list (each item’s value was

highlighted in the image). The memory location storing a memory address acted like a sort of

pointer. In this example, memory address 1 is the head item, which had a value of 1 and the

next item in the list is at the memory address 3 (as the value in memory address 1+1 is 3). The

length of this list was 20 items, although the actual length of the simulation depended on

what value was being searched for in the list, as once it was found, the simulation stopped.

The length was tested for 7, 10, 15, and 20 items (all simulation results for “find in list”

benchmark found in Appendix 12).

41 | P a g e

Testing:

Length 10 (typical):
To test a length 10 linked list, the first instruction needed to be changed to 000A, as the linked list
values are in numerical order, and thus it would stop at 10 items when 0xA or 10 is found as the
value in the tenth item.
149 cycles
2.99 us

42 | P a g e

Relationship between execution time and linked list size

Execution time seemed to increase linearly with linked list size as each item took up the same amount

of time. It would be interesting to investigate quicker search algorithms, possibly using binary search

trees.

43 | P a g e

8 Optimisation

8.1 Basic CPU evaluation
The speed, power and area were measured using the full compilation on Quartus. This evaluation is

for the unpipelined CPU.

To find the geometric mean time, a parameter was fixed for each benchmark tests that obtained

similar execution times between each test. This allowed comparison between geometric mean times.

FIB(3) = 3
191 cycles = 3.149 us

LCG typical parameters A=25385=0x6329, b=3, n=8
213 cycles = 3.512 us

Length 15 linked list:
219 cycles = 3.611 us

Geometric mean time = 3.42 us

Analysis of CPU block:

Timing analysis:

44 | P a g e

The largest propagation delay in the CPU_block bdf was between the instruction and data memories.

In the CPU, there is a large propagation delay due to the entire loop being completed in one cycle and

being required for the next cycle. One way to decrease this propagation delay is to add pipelining

stages. A register could be added at the output of the data RAM so that the output is ready at the next

cycle. This would involve changes to the state machine so that all the stages have a value in each

register, and then this could be pipelined so that each stage has a very log propagation delay, thus

increasing the max clock frequency (discussed further in Extension).

Power:

45 | P a g e

Area:

Power and area were more difficult to change than speed, although they were taken into

account when choosing the multiplier to carry out multiplication.

8.2 Choosing the multiplier
To maximise the clock frequency of the CPU, the propagation delay needed to be minimised.

Therefore, the power and latency analysis were done with the Radix 2 multiplier (Figure

analysis Radix 2 Appendix 8) and the Radix 4 multiplier(Figure analysis Radix 4 Appendix 7).

After running the full compilation with model Cyclone IV E, the TimeQuest Timing Analyzer

showed the time analysis.

46 | P a g e

The set-up slack in time analysis means the difference between the data required time and

the data arrival time. For the radix 4 multiplier, the worst-case slack is 0.395, for the radix 2

multiplier is 0.677. The radix 4 had half the cycles, 0.395*2>0.677. The result showed that the

propagation delay for radix 4 multiplier was less compared to radix 2. The positive slack in

each simulation meant there were still some margin for both multipliers to increase the clock

frequency further.

The dynamic power is the power consumed when inputs are active, the static power is the

power consumption the inputs are kept constant, it is usually caused by DFF. For the Radix 2

multiplier, total power dissipation was 97.79mV, core dynamic thermal power dissipation was

6.19mW, and core static thermal power dissipation was 42.86mW. For Radix 4 multiplier,

total power dissipation was 102.71mW, core dynamic thermal power dissipation was 7.42mW,

and core static thermal power dissipation was 42.88mW. The result makes perfect sense as

the high dynamic power dissipation for radix 4 was because it shifted more bits in the same

amount of time. The similar static power was because the same number of additions had been

done in the same amount of time. Even the Radix 4 multiplier had a slightly larger total power

dissipation, however it could do double the work that radix could do with the same amount

of time. Hence, the radix 4 multiplier was the most efficient choice.

8.3 Pipelining
Pipelining9 involved creating a state machine that fetched the next instruction and executed

the current instruction during the same cycle. This approximately halved the number of cycles

required as fetch and exec1 happen at the same time.

Pipelined state machine:

9 Torsten Grust, Class Lecture, Topic "Pipelining" Database Systems and Modern CPU Architecture,
Eberhard Karls University of Tübingen, German, 2009. Available at: <https://db.inf.uni-
tuebingen.de/staticfiles/teaching/ss09/dbcpu/dbms-cpu-2.pdf>

https://db.inf.uni-tuebingen.de/staticfiles/teaching/ss09/dbcpu/dbms-cpu-2.pdf
https://db.inf.uni-tuebingen.de/staticfiles/teaching/ss09/dbcpu/dbms-cpu-2.pdf

47 | P a g e

The new state machine executes FETCH only for the first cycle and then fetches the next

instruction while executing the current instruction during EXEC1.

A reset pin was required for the DFF, so that FETCH starts at 1 at the beginning.

Pipeline hardware (see Appendix 2):

To increase PC during the first cycle, an add_one block was used for all instructions (adds one

to output of PC). A MUX chose between PC+1 and PC depending on add_sel, so it should

always increase by 1 other than for stop instructions, where it should not increase again.

Otherwise, the PC would count above the STP instruction and skip it.

48 | P a g e

Hardware:

 Pipelined control signals logic

For pipelining, JMP and BL should not increase the PC, and they should not use PC+1, as this

skips the address being jumped to. Write_next_stp (the delay for write instructions after an

LDR) also had the same logic as it should stop the PC from counting during this cycle. BL also

required an additional MUX at the input of the instruction memory so that the jump address

updates during the same cycle as the BL instruction being executed, so that the next

instruction already executes the instruction that was jumped to as it should be available at

the memory output.

49 | P a g e

Improved Multiple LDR instructions Test:

Pipelined:

Unpipelined:

50 | P a g e

Clearly the pipelined version was able to execute the LDR instructions in one cycle rather than

two cycles for the unpipelined version. This test was already optimised due to the LDR

implementation allowing for LDR instructions to be carried out in parallel, but the pipelining

allowed for even better optimisation in terms of number of cycles.

Multiplication while pipelining

More instructions had to be added after MUL instruction so that 9 instructions or cycles pass

to give the multiplier time to obtain the output. This could not be decreased using pipelining,

which meant that the LCG benchmark (the one using multiplication) did not have as great an

improvement in execution time compared to the other benchmarks, as the majority of the

time was taken up by the multiplication. While the ability to carry out instructions in parallel

was possible, this could not be fully taken advantage of for this specific benchmark as not

many instructions could be executed in parallel that would actually lead to improved

efficiency.

Pipelined CPU benchmark tests (using fixed parameters for comparison)

Pipelined: FIB(3) = 3
106 cycles

51 | P a g e

Pipelined: LCG with typical parameters:
A=25385=0x6329, b=3, n=8
163 cycles

52 | P a g e

Pipelined: Length 15 linked list search:

126 cycles

Each of the tests were clearly executed in less cycles. It was approximately halved from the

unpipelined version, other than the LCG due to multiplication causing the same delay.

Pipelined compilation

Fmax increased compared to the unpipelined CPU from 60 MHz to 63 MHz.

Geometric Mean Time (pipelined) = 2.047 microseconds

This was an increase from 3.42 microseconds. It is not exactly halved due to the long delay

that remains due to the multiplier block of 9 cycles. This took up the majority of the execution

time for the LCG benchmark.

Reg_Alu compilation :

53 | P a g e

By compiling this bdf, the paths that have the greatest propagation delay could be found.

The write_next register seemed to cause significant delay to get to the register file, due to the

large amount of combinational logic due to logic gates and MUXes. This was a bottleneck to

the maximum clock frequency. Pipeline stages could have been used to store the value at

intermediate stages in a register and change the state machine so that each stage or cycle

only involves little propagation delay. This would increase the maximum clock frequency, but

also increase the setup time is takes to fully take advantage of this pipeline. These pipeline

stage registers could be added at the output of the data RAM as this seemed to also introduce

significant slack, as well as between the register file and ALU.

9 Conclusion/Extension
Making the CPU was very interesting as it built off the work done during term 2 very well. One

could see the CPU becoming increasingly advanced as it incorporated instructions from

modern ISAs and computer architectures. The CPU met the benchmark tests that were

written in C++, so the link between programming and computer architecture could be

explored. Meeting the design goal of creating a general CPU was satisfying as there are many

different applications that can be tested.

There are several ways for the CPU to improve and to investigate further if there was more

time. Firstly, in terms of the memory blocks, a dual port RAM could be tested, as this would

54 | P a g e

probably be very similar to the current setup, while also being more compact. To make the

CPU more general, a signed multiplier could be implemented with slightly more hardware to

multiply signed numbers. More complex implementations of a multiplier could also be

investigated to attempt to decrease the number of cycles it takes. Different implementations

of the Fibonacci benchmark could also be tested, as the results showed that recursion is very

inefficient execution time scales exponentially with the input parameter. An assembler for

the invented ISA could also be made to make it easier to convert from assembly to machine

code.

In terms of optimisation, pipeline stages would have been useful to limit the effect of

propagation delay on the max clock frequency. It would be interesting to investigate how

much the maximum clock frequency would improve due to the added intermediate stages

lowering the propagation delay and how this would improve the execution times of the

benchmarks.

10 Link to Github
https://github.com/alexpondaven/CPU

Send login to ap2619@ic.ac.uk for permission to Github.

https://github.com/alexpondaven/CPU
mailto:ap2619@ic.ac.uk

55 | P a g e

11 References
[1] Scott Thornton,"What's the difference between Von-Neumann and Harvard architectures" March
8th 2018 [online]MICROCONTROLLERTIPS available at:
<https://www.microcontrollertips.com/difference-between-von-neumann-and-harvard-
architectures/>

[3] Clarke, T. Class Lecture, Topic "LEC9.pdf", Department Of Electrical & Electronic Engineering,
Imperial College London, UK,2020. Available at:
<https://intranet.ee.ic.ac.uk/t.clarke/arch/html16/lect16/lec9.pdf>

[4] ARM QRC 0006E, Thumb 16-bit Instruction Set Qucik Reference Card [online] available at:
<http://infocenter.arm.com/help/topic/com.arm.doc.qrc0006e/QRC0006_UAL16.pdf>

[5] Deepak Bordiya, and Lalit Bandil, "Comparative Analysis Of Multipliers" International Journal of
Engineering Research & Technology. Volume 2 Issue 9, September - 2013, pp. 1437– 1441. [Accessed
8 June 2020]. [Online]. Available at: <https://www.ijert.org/research/comparative-analysis-of-
multipliers-serial-and-parallel-with-radix-based-on-booth-algoritham-IJERTV2IS90625.pdf>

[6]Gim P. Hom, Joe Steinmyer, Class Lecture, Topic: “Arithmetic Circuits & Multipliers” 6.111
Introductory Digital Systems Laboratory, Massachusetts Institute of Technology, MA, Fall,
2017.Avaiable at: <http://web.mit.edu/6.111/www/f2017/handouts/L08.pdf>

[7] Wikipedia, Linear Congruential generator.[online] available at:
<https://en.wikipedia.org/wiki/Linear_congruential_generator>

[8]Linear Congruenrial Generator I section two,Cornell Department of Mathematics. [online]
available at:
<http://pi.math.cornell.edu/~mec/Winter2009/Luo/Linear%20Congruential%20Generator/linear%2
0congruential%20gen1.html>

[9]Torsten Grust, Class Lecture, Topic "Pipelining" Database Systems and Modern CPU Architecture,
Eberhard Karls University of Tübingen, German, 2009. Available at: <https://db.inf.uni-
tuebingen.de/staticfiles/teaching/ss09/dbcpu/dbms-cpu-2.pdf>

 [10] ATMEL, ww1.microchip.com. 2020. [online] Available at:
<http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf>
[Accessed 1 June 2020].

 [11] S3-eu-west-1.amazonaws.com. 2020. MIPS32® Instruction Set Quick Reference. [online]
Available at: <https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00565-2B-
MIPS32-QRC-01.01.pdf> [Accessed 28 May 2020].

 Glossary, Grefer. 2020. Risc (Reduced Instruction Set Computer). [online] Gartner. Available at:
<https://www.gartner.com/en/information-technology/glossary/risc-reduced-instruction-set-
computer> [Accessed 19 May 2020].

[13] Clarke, T. Class Lecture, Topic "LEC10.pdf", Department Of Electrical & Electronic Engineering,
Imperial College London, UK,2020. Available at:
<https://intranet.ee.ic.ac.uk/t.clarke/arch/html16/lect16/lec10.pdf>

https://www.microcontrollertips.com/difference-between-von-neumann-and-harvard-architectures/
https://www.microcontrollertips.com/difference-between-von-neumann-and-harvard-architectures/
https://intranet.ee.ic.ac.uk/t.clarke/arch/html16/lect16/lec9.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0006e/QRC0006_UAL16.pdf
https://www.ijert.org/research/comparative-analysis-of-multipliers-serial-and-parallel-with-radix-based-on-booth-algoritham-IJERTV2IS90625.pdf
https://www.ijert.org/research/comparative-analysis-of-multipliers-serial-and-parallel-with-radix-based-on-booth-algoritham-IJERTV2IS90625.pdf
http://web.mit.edu/6.111/www/f2017/handouts/L08.pdf
https://en.wikipedia.org/wiki/Linear_congruential_generator
http://pi.math.cornell.edu/~mec/Winter2009/Luo/Linear%20Congruential%20Generator/linear%20congruential%20gen1.html
http://pi.math.cornell.edu/~mec/Winter2009/Luo/Linear%20Congruential%20Generator/linear%20congruential%20gen1.html
https://db.inf.uni-tuebingen.de/staticfiles/teaching/ss09/dbcpu/dbms-cpu-2.pdf
https://db.inf.uni-tuebingen.de/staticfiles/teaching/ss09/dbcpu/dbms-cpu-2.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00565-2B-MIPS32-QRC-01.01.pdf
https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00565-2B-MIPS32-QRC-01.01.pdf
https://www.gartner.com/en/information-technology/glossary/risc-reduced-instruction-set-computer
https://www.gartner.com/en/information-technology/glossary/risc-reduced-instruction-set-computer
https://intranet.ee.ic.ac.uk/t.clarke/arch/html16/lect16/lec9.pdf

56 | P a g e

12 Appendix
Appendix 1: Unpipelined ALU1

57 | P a g e

Appendix 2: Pipelined ALU1 differences

Appendix 3: Meeting notes

Date Discussion Alex Peter Jason

25/5 • Discussed stack and shared
research on AVR and SPARC

• Went through fibonacci
benchmark

58 | P a g e

26/6 • Discussed Jason's assembly
code for fib benchmark

• Went over stacks
• Discussed number of

registers and instruction
format
o Decided it is best to

decide this once all
benchmarks have
been turned into
assembly and we
know what
instructions will be
needed

Look at next
benchmarks and see
what instructions we
may need and
convert to assembly

Research
multiplication
methods

Make assembly
more efficient
and think of
register to use

27/5 • Went over assembly code
for LCG and linked list
benchmarks

• Discussed multiplication
methods

• Made a list of instructions
using benchmarks

Think of
implementation of
instructions (DECA
oral as well)

Continue
multiplication
method
research

Reduce number
of instructions
used in fib

29/5 • Went through Jason's in
detail implementation of
stack instructions - may
need new instructions

• Made plan of CPU - went
through each instruction to
determine how it may be
implemented - not sure
about branch (BL) and
LDMB, STMB instructions for
fib

Branch and link
hardware
implementation

Research
multiply
methods

LDMB (POP)
implementation

31/5 • Discussed LDMFD instruction
for loading and increasing
stack pointer - this could be
done with a bit in instruction
word specifying if stack
pointer should be changed

• Discussed instruction word
format

• Got stuck on trying to make
LDR one cycle - not sure if
this is possible

Look at different
instruction formats
(e.g. Thumb) and
determine
instruction formats

Force block
and
multiplication
in ALU

LDR
implementation
in different ISAs

5/6 • Discussed multiplication -
number of cycles
o Instruction or

subroutine?

Testing LDR Parallel
multiplier
research

ISA table and
Branch logic

59 | P a g e

6/6 • Discussed parallel multiplier
ideas
o Shift/add
o Parallel - only helps

with multiple
consecutive multiplies

• How will we store the 2
registers afterwards
o 2 registers only for

multiply result

7/6 • Github merging problems
• Peter made progress on

multiply report
• Discussed how we could split

up testing work later after
github is fixed

Fix github and finish
testing all
instructions

Implement
synchronous
multiplier

Report structure
and revise
hardware

60 | P a g e

Figure 1

61 | P a g e

Appendix 4

Figure 2

Appendix 5

Figure 10

62 | P a g e

Appendix 6

Figure 11

63 | P a g e

Appendix 7

64 | P a g e

Figure analysis Radix 4

65 | P a g e

Appendix 8

66 | P a g e

Figure analysis Radix 2

67 | P a g e

Appendix 9

The ROM implementation had a slightly higher Fmax than using RAM when testing the

unpipelined versions as seen below.

Instruction ROM implementation

 Instruction RAM implementation:

Appendix 10: Fibonacci results

Fib(2) = 2

68 | P a g e

107 cycles
2.15 us

69 | P a g e

FIB(3) = 3
191 cycles
3.83us

70 | P a g e

FIB(4)=5
359 cycles
7.19 us

FIB(5)=8
611 cycles
12.23 us

71 | P a g e

FIB(6)=13
1031 cycles
20.63 us

72 | P a g e

FIB(7)=21
1703 cycles
34.07 us

Appendix 11: Pseudo-random integer generator simulations

73 | P a g e

Using "typical" parameters in overview
A=25385=0x6329, b=3, n=8
213 cycles
Execution time: 4.27 us
Pattern: 0, 3, 10625, 34994, 47758, 51917, 49639, 25364, 39500 (does not seem to repeat)

74 | P a g e

Using smaller values and longer loop, see if it repeats:
A=0x500, b=1, n=0x10
421 cycles
Doubled loop length, execution time doubled: 8.43 us

• Series still does not seem to repeat

Keeping big and longer loop:
0x6329, b=9, n=0x20
837 cycles
Execution time: 16.75 us

75 | P a g e

Appendix 12: “Find value in list” Benchmark results
Length 7:
107 cycles
2.15 us

76 | P a g e

Length 10 (typical):
149 cycles
2.99 us

77 | P a g e

Length 15:
219 cycles
4.39 us

78 | P a g e

Length 20:
289 cycles
5.79 us

Appendix 13: Instruction testing process

LDI test
Instruction mem:

LDI 1 0001

STP B000

79 | P a g e

LDR

LDR (no offset) test:

Data memory:
0x0004
0x00AB

Instruction mem:

LDI 0x1 0001

LDR 0 0 R1 R0 1008

LDI 0x0 0000

STP B000

• Note - does not work yet - implemented later
•

• Was loading 0x4 into R1
• Forgot that wen for register file needs to be off for exec1 of ldr instruction

• Removed ldi and ldmfd from wen and added the OR gate so that it writes when the

write_next bit in status bus is active even when wenout is off

Another issue:
• Daddr remains at 0
• Daddr pin was not named

80 | P a g e

• During STP, R0 is written to since the initial values in memory is 0000, which is LDI 0000,

which loads R0 with 0000
• Need to add a STP bit in status register to say that the program has stopped and wenout in

ALU should be off
• After doing this, wenout was stuck at 0
• This is because stp_en is initialised to 1

• Should expect 0 as register is initialised to 0, so initial status[5] should be 0

Status register:
• Do we need to have separate registers so that I can individually enable writing to the

different bit fields - actually maybe not as it needs to be returned to 0 if it is done

• Could not see stp_en as bit size was not right in simulation
• It is always at 1

Stp_en is actually not needed as instr stays ta B000, for some reason thought it went to 0000
• But wenout is off while R0 is changing???
• Status[3] is on, which turns on wenout
• Need it to turn off one cycle afterwards

81 | P a g e

• Don’t need stp_en stuff and we need to separate status register to cin register and
write_next register

Simulation again:

• Same problem, wen is on with stp as write_next_out[3] is on and is not switched off after

loading in next cycle

Issue was that write_next_en was only on for ldi and ldmfd, when it should always be on during
exec1, so that it can actually go back to 0

Simulation working:

82 | P a g e

• Realised this doesn't work as it will be pipelined - can't actually LDI after LDR - can't write to

registers as there is a conflict for what to have as port1addr
Test STP right after LDR
Data memory:
0x0004
0x00AB

Instruction mem:

LDI 0x1 0001

LDR 0 0 R1 R0 1008

STP B000

Issue:

• R0 is changing since wen is enabled while daddr is 0 during STP exec1
• Port1addr needs to come from status register, not instruction word - forgot to actually take

status register address and put it into port1addr -> enabled if status[3] is enabled
• Added MUX:

83 | P a g e

Old simulation:

84 | P a g e

• Port1addr is 1 during ldr instruction rather than one cycle after when dout has updated

• Status is not storing 1001
• Storing 1000 so it loads to R0 (sees register address as 0)

• It was taking Rs into write_next rather than Rd address, corrected:

Working;

• R1 loaded with 0x00AB or mem[1] and R0 remains at 1

Test two LDR instructions after each other
• Works since the first cycle of the second LDR does not write to registers

Data memory:
0x0004
0x00AB

Instruction mem:

LDI 0x1 0001

LDR 0 0 R1 R0 1008

LDR 0 0 R2 R0 1010

STP B000

85 | P a g e

Issue:

• If the next instruction is an LDR, need to make sure that it does not reset write_next_flag to

0 as seen above

Working:

86 | P a g e

Test multiple LDR instructions
Data memory:
0x0004
0x0002
0x00AB

Instruction mem:

LDI 0x1 0001

LDR 0 0 R1 R0 1008

LDR 0 0 R2 R0 1010

LDR 0 0 R3 R2 101A

STP B000

0001 1008 1010 101A B000
Works:

Test positive offset LDR
Data memory:
0x0001
0x002
0x003
0x006
0x004

Instruction mem:

LDR 0 1 R1 R0 1048

87 | P a g e

LDR 0 2 R2 R0 1090

LDR 0 2 R3 R1 1099

STP B000

Working:

Test negative offset LDR
Data memory:
0x0002
0x003
0x004
0x005
0x006

Instruction mem:

Instruction Machine code Action

LDI 0x4 0004 R0 = 0x0004

LDR 1 1 R1 R0 1848 R1 = mem[R0-1] = 0x0005

LDR 1 2 R2 R0 1890 R2 = mem[R0-2] = 0x0004

LDR 1 2 R3 R1 1899 R3 = mem[R1-2] = 0x0005

STP B000

Working:

88 | P a g e

• Can't write register after LDR, can only LDR, STR, JMP, STMFD and STP
• What if must write register after LDR, how to wait?

• Messy: Could have 2 separate registers for stack and link register to write at the same
time - may be more messy

• Hacky: have a JMP instruction to next PC value to basically do nothing or STR a value
in memory

• Best?: Have logic that says if when write_next_status[3] is on and the current
instruction is a write instruction, PC stays at the current instruction
▪ Can add input to decoder that stops pc_cnt_en just like stp
▪ I believe the current order of MUXes will make LDR writing to register take

priority over LDI for example
Implementation:
ALU:

Decoder:

Test LDR and then LDI
Data memory:
0x0004
0x00AB

Instruction mem:

89 | P a g e

LDI 0x1 0001

LDR 0 0 R1 R0 1008

LDI 0x0 0000

STP B000

Issue:

• R1 loads 0

• When port1addr is still at 1, ldi has started already
• should make sure when write_next_stp is on, ldi_sel is off
• Also changed ldi_sel so it is in alu - makes more sense

Working:

Test Mov after LDR
Data memory:
0x0004
0x00AB

90 | P a g e

Instruction mem:

LDI 0x1 0001

LDR 0 0 R1 R0 1008

MOV 0 0 0 R2 R0 3010

STP B000

• Added register file din as output

• Need a way to de-activate the current instruction from changing the
• Din should not be changed while port1addr is still at 1

• Din_sel should still select from din even though mov has started if the write_next_stp is enabled

91 | P a g e

Working:

STR

STR (no offset) test:

Data mem:
0x0
0x2

Instruction mem:

Instruction Machine code Action

LDI 0x1 0001 R0 = 0x1

LDR 0 0 R1 R0 1008 R1 = mem[R0] = 0x2

LDI 0x0 0000 R0 = 0x0

STR 0 0 R1 R0 2008 Mem[R0] = mem[0x0] = R1 = 0x2

LDR 0 0 R2 R0 1010 R2 = mem[R0] = 0x2

STP B000

 - CANT LDI AFTER LDR

92 | P a g e

Issue
• Need to add STR to also change daddr

Working:

MOV

• Need to actually write carry ff during all mov instructions

• "No shift" writes 0
• LSL writes MSB
• Shift right writes LSB

Test:
Data mem:
0xFFF0

Instruction mem:

Instruction Machine code Action

LDI 0xF0 00F0 R0 = 0xF0

MOV 0 0 0 R1 R0 3008 R1 = R0 = 0x0F0

MOV 1 1 0 R2 R0 3610 R2 = R0 + 1 = 1 0xF1

93 | P a g e

MOV 0 1 1 R3 R0 3258 R3 = LSL R0 = 0x1E0

MOV 1 1 1 R4 R0 3660 R4 = 0x1E1

MOV 0 1 2 R5 R0 32A8 R5 = LSR R0 = 0x78

LDI 0 0000 R0=0

LDR 0 0 R6 R0 1030 R6 = 0xFFF0

MOV 3 1 2 R6 R6 3EB6 R6 = ASR 0xFFF0 = 0xFFF8

STP B000

00F0 3008 3610 3258 3660 32A8 0000 1030
3EB6 B000

Working:

JMP

• As the conditions for jump need to determine if sload is loaded, the decision was made to put the
entire decoder in the ALU
• This makes it easier and less messy, so multiple signals do not need to leave each block and

result in longer time to compile and test

JMP ALU logic:

94 | P a g e

• Did not work - pc_sload and pc_cnt_en were undefined during exec1

JMP test

Instruction mem:

PC Instruction Machine code Action

0 LDI 0x1 0001 R0=0x1

1 MOV 0 0 0 R1 R0 3008 R1 = R0 = 0x1

2 LDI 0x5 0005 R0 = 0x5

3 JMP 0 0 R1 R0 4008 JMP 5 // set PC=5

4 LDI 0xFFF 0FFF R0=0xFFF // JMP not working

5 LDI 0x8 0008 R0 = 0x8

6 JMP 1 1 R1 R0 4448 JEQ 8 // set PC=8

7 LDI 0xFFF 0FFF R0=0xFFF // JEQ not working

8 LDI 0xB 000B R0=0xB

9 JMP 2 2 R1 R0 4888 JMI 11 // Set PC=11

10 LDI 0xFFF 0FFF R0=0xFFF // JMI not working

11 LDI 0xE 000E R0=0xE

12 JMP 3 0 R1 R0 4C08 JMB 14 // Set PC=14

13 LDI 0xFFF 0FFF R0 = 0xFFF // JMB not working

14 STP B000

0001 3008 0005 4008 0FFF 0008 4448 0FFF
000B 4888 0FFF 000E 4C08 0FFF B000

Working:

95 | P a g e

ADD/SUB

Multi-register Add/Sub test (from ARMish testing)
Instruction mem:

Instruction Machine code Action

SUB 0 1 R1 R3 620B

SUB 2 1 R0 R2 6A02 R0:R1 := R0:R1 - R2:R3 - 1

ADD 1 1 R1 R3 560B

ADD 2 1 R0 R2 5A02 R0:R1 := R0:R1 + R2:R3 + 1

LDI 0x1 0001 R0=0x1

MOV 0 0 R3 R0 3018 R3=0x1

MOV 0 0 R2 R0 3010 R2=0x1

SUB 1 1 R1 R3 660B

SUB 2 1 R0 R2 6A02 R0:R1 := R0:R1 - R2:R3

ADD 0 1 R1 R3 520B

ADD 2 1 R0 R2 5A02 R0:R1 := R0:R1 + R2:R3

STP B000

Working:

96 | P a g e

MUL

Instruction Machine code Action

LDI 0x3 0003

MOV R1 R0 3008

LDI 0x4 0004

MOV R2 R0 3010

MUL R2 R1 7011

LDI 0x0 0000

LDI 0x0

LDI 0x0

LDI 0x0

LDI 0x0

LDI 0x0

LDI 0x0

LDI 0x0

LDI 0x0

STP B000

• Need to make sure regfile is not written during MUL

Working:

97 | P a g e

Largest Multiplication:
Data RAM:
0xFFFF

Instruction Machine code Action

LDR 0 0 R1 R0 1008

MUL R1 R1 7009

LDI 0x0 0000

LDI 0x0

LDI 0x0

LDI 0x0

LDI 0x0

LDI 0x0

LDI 0x0

LDI 0x0

LDI 0x0

STP B000

98 | P a g e

Storing MSB and LSB into regfile

Instruction Machine code Action

LDR 0 0 R1 R0 1008

MUL R1 R1 7009 R1 * R1

LDI 0x0 0000

LDI 0x0

LDI 0x0

LDI 0x0

LDI 0x0

LDI 0x0

LDI 0x0

LDI 0x0

MOV 0 0 3 R3 0 30D8 R3 = LSBs of product

MOV 0 0 3 R4 1 30E1 R4 = MSBs of product

STP B000

1008 7009 0000 0000 0000 0000 0000 0000
0000 0000 30D8 30E1 B000

99 | P a g e

Testing add and multiply:

Instruction Machine code Action

LDR 0 0 R1 R0 1008

MUL R1 R1 7009 R1 * R1

LDI 0x1 0001

MOV R3 R0 3018

LDI 0x1 0001

MOV R4 R0 3020

LDI 0x0 0000

LDI 0x0

LDI 0x0

LDI 0x0

MOV 0 0 3 R3 0 30D8 R3 = LSBs of product+1

MOV 0 0 3 R4 1 30E1 R4 = MSBs of product+2

STP B000

1008 7009 0001 3018 0001 3020 0000 0000
0000 0000 30D8 30E1 B000

100 | P a g e

BL

Test if link register loading works
Instruction mem:

PC Instruction Machine code Action

0 BL 2 8002 For now just sets R6=0x1

1 STP B000

Working:

101 | P a g e

Test if full BL works

PC Instruction Machine code Action

0 BL 2 8002 For now just sets R6=0x1

1 STP B000

2 LDI 0xFFF 0FFF R0=0xFFF

3 JMP 0 0 R0 R6 4006 PC=0x1

Working:

102 | P a g e

STACK

LDMFD and STMFD

Test:

Instruction Machine code Action

LDI 0x1 0001

MOV R1 R0 3008 R1=0x1

LDI 0x3 0003

MOV R6 R0 3030 R6=0x3

LDI 0x2 0002 R0=0x2

PUSH R1 A00F / A039 PUSH 0x1

PUSH R0 A007 / A038 PUSH 0x2

PUSH R6 A037 / A03E PUSH 0x3

POP R2 9017 R2=0x3

POP R3 901F R3=0x2

POP R4 9027 R4=0x1

STP B000

0001 3008 0003 3030 0002 A039 A038 A03E
9017 901F 9027 B000

103 | P a g e

Issue:

• Stack pointer is not changing

• Rdin is rd-1
• Also need to have wen during stmfd

• We also need aluout to be selected for din
• Thus, ldmfd instructions cannot be done in parallel like ldr as something is written every cycle

• Now it is writing R6, instead of LDMFD and STMFD
• Rdin should be

• Stmfd works but not ldmfd
• 2 ldmfd instructions do not work after each other as write_next_stp is stuck at 1

Issue:

104 | P a g e

• STMFD works but in LDMFD, stack pointer is not updating

Issue:

• Works but the registers are rewritten to 0 as rdin becomes 0
• This is because dout changes to 0 for the instructions that need to wait when write_next_stp is

enabled
• Daddr switches to 0 during fetch as aluout is reset

• Saw that when write_next_flag is on, wen should be the inverse of wenout, so that it is not on in

that last cycle where 0 is written is at daddr, so could use an XOR gate to carry out selective
inversion
• May cause problems when pipelining

105 | P a g e

• Added stp to wenout, this may cause problems for other instructions writing during stp - check
later

Working:

Issue: loading 0 in because enabled stp in wrenout

Added this - may help - temporary solution - may be different when pipelining

Working:

Test doing LDI after this to make sure it works after POP

• Works with LDI

106 | P a g e

