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1 Abstract 
This report presents in detail how a Central Processing Unit has been built to meet certain 

benchmarks and design goals.  The CPU was based on an invented instruction set architecture 

and took advantage of the Harvard Architecture philosophy, while building off the work done 

with ARMish in term two. In this report, a clear explanation of the hardware implementation 

has been done including analysis of how individual instructions control hardware. The report 

also includes the optimisation process, where pipelining, latency/propagation delay and the 

trade-off between speed, power, and area have been discussed. 

 

2 Introduction 
The CPU is the core of a computer and plays a paramount role in electronic engineering. The 

primary objective was to build a CPU that could do the benchmarks (Calculating Fibonacci 

numbers, pseudo-random integers with a linear congruential generator and traverse a linked 

list), while remaining general (Turing complete). Hence research on different ISAs like AVR, 

MIPS, SPARC, and ARM, as well as the Harvard Architecture was conducted. Some instructions 

were specifically developed for the benchmarks like multiply, subroutines, and stacks.  After 

deciding upon a 12 instruction ISA to meet the benchmark requirements, the separate 

hardware blocks were decided. The CPU’s hardware took inspiration from the ARMish CPU 

built in term two, as it had a register file and ALU to carry out calculations.  After implementing 

all instructions with hardware, the CPU was optimised to maximise power, speed, and area. 

This was done through pipelining, parallel computation, and analysis of different multipliers. 

 

3 Project Planning and Management 

  

Before starting the project, the Belbin Inventory had been completed to find out the different 

roles of team members. There was an implementer who is practical, reliable, efficient, hard-

working, and methodical. It helped to have a shaper who is energetic, driven, and bold. The 

final person was a resource investigator who is outgoing and a great motivator. The task was 

split into three main tasks for each member, with all team members having a general 

understanding of the CPU. One person implemented the hardware and tested instructions. 
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The second person had done research on the multiplier and hardware components. The last 

person helped write the test code for the benchmarks and implement the CPU. On 8th June, 

all the general instructions with associated hardware had been completed and tested. On 

10th June, all three benchmarks had been completed and tested. On 12th June, the CPU had 

been optimised to achieve a better frequency.  A regular meeting pattern had been used. All 

team members met every day since 24th May at 10:00 BST on Microsoft Teams to discuss 

progress and distribute tasks for the day. The TODO list website, Trello, and One Note were 

used to make share notes throughout the project. Some screen shots of the meeting plans 

and to do lists are in Appendix 3. 

Snippet of team notes: 

Date Discussion Alex Peter Jason 

26/6 • Discussed Jason's assembly 
code for fib benchmark 

• Went over stacks 
• Discussed number of registers 

and instruction format 
o Decided it is best to 

decide this once all 
benchmarks have been 
turned into assembly 
and we know what 
instructions will be 
needed 

Look at next 
benchmarks and see 
what instructions we 
may need and 
convert to assembly 

Research 
multiplication 
methods 

Make 
assembly more 
efficient and 
think of 
register to use 

27/5 • Went over assembly code for 
LCG and linked list 
benchmarks 

• Discussed multiplication 
methods 

• Made a list of instructions 
using benchmarks 

Think of 
implementation of 
instructions (DECA 
oral as well) 

Continue 
multiplication 
method 
research 

Reduce 
number of 
instructions 
used in fib 
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4 Design Criteria  
The CPU should be able to run the following three benchmarks.   

Calculate Fibonacci numbers using recursion 

            
 Calculate pseudo-random integers with a linear congruential 

generator (LCG) 

                      

 

 

             

 

Traverse a linked list to find an item 
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Software requirements specification: 

Functional requirements: 

- Benchmark tests: 

o Fibonacci test and recursion 

▪ Stack 

▪ Stack pointer 

o LCG 

▪ Multiplication 

o Traverse linked list and find item 

▪ Indirect addressing 

- Correctness 

o Use benchmark algorithms to check using trial data 

o Compare with hand-calculated results 

- Speed - minimise geometric mean time (T1T2T3)^(⅓) 

o Found by counting number of CPU cycles required for each benchmark and 

how this changed with size of problem (e.g. size of list) 

o Find max clock speed of design and minimum execution time 

- Power consumed - minimise number of logic gates 

o Number of logic gates and clock speed 

Non-functional requirements: 

- Greatest number of applications for least number of transistors 

- 16-bit instruction word 

- At least 2k words of instructions and 2k words of data 

- Built and simulated using Quartus 
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5 Outline of technical problem 
Technical Problem: Build a general CPU that can complete the given benchmarks. 

The CPU was not a task to create a hyper specialised instruction set that only implements the 

benchmarks in the most efficient way and does nothing else. It also required the CPU to be 

Turing complete, which involve implementing indirect or register addressing of memory, 

computed jump (jump with register value), and loading current value of PC into a register or 

memory. Each benchmark also required specific instructions and hardware to be 

implemented, including subroutines, multiplication, and the stack.  

6 Design Process 

6.1 Overview of design 
Memory 

The memory blocks took inspiration from the Harvard architecture philosophy1. This involved 

separated the memory into an instruction ROM, where the main program was stored, and a 

data RAM, where all the data was stored. The different memory types could then be 

addressed differently. This was useful for implementing indirect addressing and a pointer to 

the stack (a section in the data RAM), as the ALU can output the correct data address for each 

cycle depending on the instruction. The instructions and data could also be accessed 

simultaneously, which was very useful for pipelining, as the next instruction can be fetched 

at the same time as reading or writing from the data memory. 

The instruction memory could be either a ROM or RAM as the CPU never needs to write to 

this memory block. The two types of memory both simulate pretty much identically in Quartus. 

The ROM was used as it looked cleaner without all the extra write outputs for RAM (see 

Appendix 9 for more detail on decision). 

The size of both memory blocks were 4096 16-bit words. As the opcode was 4 bits, one 

instruction (LDI) could use the rest of the bits to load a 12-bit constant that could be used as 

an address for all 4096 locations in the memory blocks. This was useful for testing. 

 
1 Scott Thornton,"What's the difference between Von-Neumann and Harvard architectures" March 
8th 2018 [online]MICROCONTROLLERTIPS available at: 
<https://www.microcontrollertips.com/difference-between-von-neumann-and-harvard-
architectures/> 
 

https://www.microcontrollertips.com/difference-between-von-neumann-and-harvard-architectures/
https://www.microcontrollertips.com/difference-between-von-neumann-and-harvard-architectures/
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Register file 

 

 

The register file included 8 registers. This required a 3-bit port addresses to select which 

register to read from or write to. Using 16 registers would have required 4 bits, which would 

take much more space in the instruction words, and many registers would not be used for the 

benchmarks given. This register file took inspiration from the ARMish CPU register file built in 

the second term, although register files are common for most CPUs. 
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ALU with register file (file called ALU1) 

 

Like ARMish, the ALU was able to read from two registers in the register file, addressed using 

bits in the instruction word. The ALU implemented the decoder for all the signals and could 

do calculations on the two registers that were read. It handled all the logic and was 

implemented in Verilog (full ALU in Appendix 1). 

State machine (unpipelined) 

The synchronous state machine controlled what state the CPU was in. 

 

The unpipelined state machine just switched between the execute (EXEC1) cycle and the 

FETCH cycle as a new instruction is fetched every second cycle. This made it easier to pipeline 

the CPU as all logic was already carried out during EXEC1. The states were numbered as above, 

so the next state was just the inverse of the current state. 
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Decoder: 

Originally, the decoder for control signals was separate from the ALU, although most logic 

signals were in the ALU, so many output and inputs needed to be created to leave different 

BSF files, which increased the time it took to test. This was simplified by moving the state 

machine into the regfile_ALU BDF and decoder logic was put into the ALU. 
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Original decoder: 

 

CPU block 

 

This block made the connections between the regfile_alu block, the program counter and the 

memory. The program counter (PC) addressed the instruction memory, while the address for 

the data memory came from the ALU. The MUX at the data input of the PC switched between 

loading the PC with the value of the second register that was read for jump instructions and 

the least significant 12 bits of the instruction for branch instructions (discussed in the next 

section). 
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6.2 Instruction Set Architecture (ISA) choice explanation 
The instructions were chosen to meet the requirements of the benchmarks and to create a 

general CPU. Given the word length of 16 bits, there was a limitation to how many bit fields 

could fit into the instruction. The register file contained 8 registers, which required a register 

address of 3 bits to select one of them. Therefore, two-operand instructions were used as it 

only took 6 bits of the instruction to select the two registers to read/write to. Three-operand 

instructions would be too large as they would require 9 bits and only 7 bits would be left for 

the opcode and other bit fields.  

To decide upon the instructions required, the benchmark codes were first converted into a 

first draft of assembly code, so that the required instructions could be found. 

ISA: 

LDI Load a 12-bit constant into R0 

LDR Load value from memory into a register 

STR Store value from register into memory 

MOV Move shifted value of one register to another 

JMP Jump to an address depending on a condition 

ADD Add two register values 

SUB Subtract two register values 

MUL 16-bit multiplication of two register values stored in separate output registers 

BL Branch and link 

LDMFD POP - Load value from stack and increase stack pointer 

STMFD PUSH - Store value into stack and decrease stack pointer 

STP Stops the program 

 

LDI: It was useful to load a 12-bit address into a register to be able to address all 4096 

locations in memory. Due to the 16-bit word limit, LDI only worked for one instruction 

LDR, STR: These instructions took inspiration from ARM, and were both used to implement 

register addressing. This is needed for the “find in list” benchmark. 
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MOV: Just like in ARM, the MOV instruction also carried out different shifts on the register 

value. While this was not specifically required for the benchmarks to work, it is a very useful 

function for general CPUs to have. 

JMP: Jump was required for all benchmarks to implement loops in assembly code. The 

benchmarks also required conditional jumps, which were implemented using a condition field 

in the instruction that determines what condition needs to be met for the jump to work. 

ADD, SUB: Based off ARMish. 

MUL: Multiplication was required for the pseudo random number generator. This was 

implemented with a separate multiplier block, which both allowed the team to work in 

parallel, and for the ALU to carry out instructions at the same time as the multiplication is 

occurring. 

BL: Branch and link2 implemented subroutines, and were based off ARM. This involved having 

a link register (register 6) that stored the next address and then jumped to the address of the 

subroutine in the instruction word. When this subroutine (like a function in a separate part of 

the memory) was finished, it jumped to the value in the link register to return to where it left 

off in the main program. This instruction was useful when implementing the recursive 

Fibonacci benchmark test as it needed to call the Fibonacci function multiple times and 

needed to return to where it left off. 

LDMFD/STMFD (POP/PUSH): These instructions implement the stack that is required for the 

Fibonacci benchmark. The stack was a section of the data memory addressed by a stack 

pointer. The stack pointer (register 7) decreased for POPs and increased for PUSHes. This took 

inspiration from the AVR ISA3. Each of these instructions needed to be called three times to 

pop/push the value of the link register, and the two local variables (M for multiple). The FD 

stands for full descending as the stack starts at the end of the data memory. This prevented 

the need to initialise the stack pointer at a particular address and run the risk of it exceeding 

0xFFFF. Instead, the stack starts at 0xFFFF and descends when adding new items to the stack. 

 
2 Clarke, T. Class Lecture, Topic "LEC9.pdf", Department Of Electrical & Electronic Engineering, 
Imperial College London, UK,2020. Available at: 
<https://intranet.ee.ic.ac.uk/t.clarke/arch/html16/lect16/lec9.pdf> 
3 http://ww1.microchip.com/downloads/en/DeviceDoc/doc2503.pdf 

https://intranet.ee.ic.ac.uk/t.clarke/arch/html16/lect16/lec9.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/doc2503.pdf
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 6.3 ISA format 
The decided ISA format took some inspiration from the ARM Thumb ISA4, due to the 16-bit 

word length. It helped make decisions on how many bits are needed for each field and how 

to reduce the instruction set. 

ISA Table: 

 

Note: Rd= destination register, Rs = source register 

Descriptions: 

 

LDI would load a constant to Register 0. It would read the operand (12 bits) to store the 

integer to the register. Being able to load a 12 bits constant would allow the CPU to load any 

address number to the register, and thus it could jump to any address in the memory. The 

opcode of LDI is 0000, so this helped address directly to R0 by letting port address in the 

register file read from the opcode. 

 
4 ARM QRC 0006E, Thumb 16-bit Instruction Set Qucik Reference Card [online] available at: 
<http://infocenter.arm.com/help/topic/com.arm.doc.qrc0006e/QRC0006_UAL16.pdf> 
 

http://infocenter.arm.com/help/topic/com.arm.doc.qrc0006e/QRC0006_UAL16.pdf


15 | P a g e  
 

  

 

LDR would load a value stored in the memory to one of the registers. Rs bits [2:0] was the 

address of the register which stored the address of the value to be loaded to another register. 

Rd bits [5:3] was the address of the register where the value should be moved to. OFFSET bits 

[10:6] would provide a positive or negative offset to the value in the Rs depending on the S 

bit. Sign bit (S) [11] would define the direction of the offset: 0 would be positive offset, 1 

would be negative offset. 

In order to do that, the value stored in the memory first need to be loaded into R0 using LDI.  

The offset function helped the CPU implement register addressing for the “Finding in linked 

list” benchmark, since it could load the next location of the value where the address of the 

next item is stored. 

The problem is that the LDR would require two cycles, one for the retrieving the data from 

RAM, one for writing back the value to the register. This was solved using the same state 

machine by allowing instructions to be completed in parallel (See Hardware descriptions in 

next section). 

  

 

 STR was implemented in the same way as LDR except instead of loading a register with a 

memory address, STR stores the register value into the memory address given by mem[Rs ± 

Offset]. This was not required for the benchmark but helped generalise the CPU. 

  

 

MOV would move the value from Rs to Rd while also doing optionally shifting the value. Rs 

bits [2:0] was the register which stored the value to be moved. Rd bits[5:3] was the register 

where the value should be moved to.   
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Shift type: 

00: no shift 

01: shift left 

10: shift right 

11: move multiply registers 

CIN field: 

00: cin=0 

01: cin=1 

10: cin = carrystatus (previous carry) 

11: cin = CMSB (carry most significant bit of Rs) 

The Move multiply registers option was added later with multiplication as the product is 

stored in two separate registers from the register file, so these instructions were necessary 

to move them to the register file. Only one MOV instruction was required after multiplying 

for the LCG as only the least significant 16 bits are required. Although, general multiplication 

with the full 32-bit product is possible. 

 

JMP would change the address in the program counter under different condition. Rs bits [2:0] 

was the register which stored the address the program counter should jump to. Rd bits [5:3] 

was the register which stored the value to be compared with the comparator. Comparator 

bits [9:6] was the value to be compared with the value in Rd.  

COND field [11:10] 

00: JMP (always) 

01: JEQ (jump if equal) Rd==comparator 

10: JMI (jump if less than) Rd < comparator 

11: JMB (jump if bigger than) Rd > comparator 
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ADD/SUB would add/subtract the value in Rd and Rs and store the result back to Rd. Rs bits 

[2:0] was the register which stored one of the number for addition. Rd bits [5:3] was the 

register which stored one of the number for addition and the register the result would be 

stored in. Bits [8:6] are reserved for future features. CWEN bit [9] would enable writing the 

result to the carry register. CIN is added to the result. Note that normal subtraction required 

CIN=1 as the conversion to 2’s complement of Rs required an inversion and addition of 1. 

 

 MUL carried out 16-bit multiplication between Rd and Rs and stored the product in 2 output 

registers after the multiplier block. 

 

LDMFD/POP would load the value stored in the stack area back to the register. Bits [2:0] was 

the location of the stack register (R7). Rd bits [5:3] was the register where the value should 

be restored to. Bits [11:6] were not needed.  

The process of this instruction is  

Rd = Mem[Stack Pointer] 

Stack Pointer = Stack Pointer + 1 

 

STMFD would store the value in the register to the stack area. Rd bits [2:0] was the register 

stored the value to be preserved. Bits [5:3] was the location of the stack register (R7). Bits 

[11:6] were not used. The location of 111 was flipped as it made the logic easier. 

The process of this instruction is:  

Stack Pointer = Stack Pointer - 1 
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Mem[Stack Pointer] = Rd  

The reason why stack pointer would decrement by one first is that the stack register would 

initialise to be 0, and minus one would let it be 0xFFFF which pointed to the end of the 

memory. 

 

STP function would stop the whole program (prevent the program counter from counting). 

 

6.4 Instruction Hardware Implementation 
 

LDI, ADD, SUB, and STP were implemented like ARMish 

Input to register file 

 

The series of MUXes selected the input of port1addr[2:0] (to address the register to write to) 

depending on the instruction. The possible inputs included instr[5:3] to address Rd, instr[2:0] 

for selecting register 7 for the pop instruction, 3’b000 for LDI, 3’b110 (register 6) for writing 

into the link register in BL, and write_next_status[2:0], which is used for LDR (described 
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below). The MUXes at the input of din (data in of register file) also switched between either 

data from the RAM (din[15:0]), the instruction word (instr[15:0]), or the output of the ALU 

(aluout[15:0]). See appendix 1 for ALU logic for control signals. 

Output of ALU 

 

The carry flip-flop bits carryout, carryen, and carrystatus were implemented using the ARMish 

design. The other register is used for LDR instructions as explained below. 

LDR hardware implementation 

LDR required two cycles: one for reading a value from the RAM, and one for writing data out 

of the RAM into the register file. This meant that data in (din) of the register file is only 

updated one cycle after the LDR instruction, so port1addr needs to be correct one cycle 

afterwards, as well as write enable (wen). A register called write_next was added at the ouput 

of the ALU that stores “write_next_flag” (telling the next instruction that the data is now at 

dout during the next cycle and can enable writing) and the address of Rd given by bits [5:3] of 

the LDR instruction. This register was enabled every execute cycle. 
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This implementation allowed other instructions to be carried out in parallel with this second 

cycle for LDR, given that the following instruction does not write to the registers or read from 

the register being written to by LDR (as it has not updated yet). To prevent the CPU from 

bugging if the next instruction was a write instruction, the write_next_stp bit stops PC from 

counting during this second LDR instruction to allow it to finish before the next instruction 

executes. This acted like a delay to the system and allows the assembly to have any instruction 

after LDR as the ALU decides if the PC waits for LDR to finish or if the next instruction can be 

done in parallel. Note that LDR instructions could be executed after each other and be done 

in parallel as the first cycle of LDR just involved the data RAM. An XOR gate between the write 

enable out (wenout) of the ALU and the write_next_flag from the write_next register 

determined if the register is written or not (as these two bits should not be on at the same 

time). 

LDR instructions after each other 

Data memory: 
0x0004 
0x0002 
0x00AB 
  
Instruction mem: 

LDI 0x1 0001 

LDR 0 0 R1 R0 1008 

LDR 0 0 R2 R0 1010 

LDR 0 0 R3 R2 101A 

STP B000 

 
Simulation: 
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In the simulation multiple LDR instructions could be executed consecutively after each other 

as the output of a register updated every EXEC1 clock edge. 

Indirect addressing (LDR and STR)  

 

Indirect addressing was achieved by calculating the offset address into alusum and storing 

this as the data address (daddr) as seen above. The offset address was calculated using the 

parameters specified in the instruction word. This was used in both LDR and STR to specify 

the address for the RAM. 

MOV 

The move instruction was implemented similarly to ARMish together with the shift 

functionality inside the ALU using alusum. 
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The option of no shift also could add cin, so this was a quick way of moving a register and 

adding one simultaneously. When instr[7:6]=11, the mov instruction output either the least 

significant 16 bits (LS_prod) or the most significant 16 bits (MS_prod) of the multiplication 

result depending on whether Rs is 0 (moves LS_prod) or 1 (moves MS_prod). LCG only used 

the Rs=0 option, as only LS_prod is required. Alusum is directed back into the data in of the 

register file to be written into the register specified by port1addr. 

JMP: 

On the other hand, jump was implemented with a wire, jmp_cond, that determined if the PC 

should load the address of Rs depending on the conditions given in the opcode and by the 

comparisons made (eq and mi). Jmp_cond enables PC loading and stops it from counting. 

 

MUL: 

Refer to multiplication method research for information about the Booth Radix 4 multiplier 

that was used. 

Hardware in regfile_alu bdf: 
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The left-hand registers were used to store the values read from the two registers in the 

register file specified in the instruction word. This was necessary as these multiplicands 

needed to be constant throughout the entire 9 cycles that it takes this multiplier to carry out 

the multiplication. When the MUL instruction started, the mul_start control signal was 

asserted, getting stored in a DFF, so that in the next cycle, the multiplication can start in the 

multwithRadix4 block. When it was done, the mul_finish signal was activated, which enabled 

writing to the output registers, where the 32-bit product was stored. As discussed previously, 

the MOV instruction had an option to store this product into the register file. This could not 

be done with the MUL instruction as there was no space in the instruction word to include 

output registers. 

 

In the alusum calculation, add and multiply was incorporated into this design, so that the 

multiply product gets added onto what is already in the destination register. This allowed it 

to first move “b” into the register in the LCG benchmark and then move the product into the 

same register, where it automatically adds the “b”. Therefore, an additional ADD instruction 

was not needed. 

BL: Branch and Link 

The link register was stored with “PC+1” and the port1addr selects 6 the MUX described at 

the beginning of the section. 

  

When the MUX at the data in of PC was asserted, it selects the least significant 12 bits of the 

instruction to be loaded into the PC. This carried out the jump from the instruction word 

rather than from a register for JMP instructions. 

LDMFD(POP)/STMFD(PUSH) 

LDMFD (pop) writes the new value into the stack pointer (subtracted by 1) while using the old 

value as the data address. STMFD (push) writes the new value into the stack pointer (added 

by 1) while using the new value as the data address. This logic was reflected in the daddr wire 

seen below. The stack pointer, R7 was selected at port1addr using a MUX (either from Rs or 

Rd – refer to ISA table).  



24 | P a g e  
 

 

 

All tests for instructions found in Appendix 13 

 

6.5 Multiplication method research 

 
Multipliers are important in CPU design, as they have long latency and consume relatively 

considerable power. A system's performance largely depends on multipliers because the 

multipliers are one of the slowest element within the system. In this section, a few ways of 

implementing the multipliers have been introduced and the strength and drawback of each 

implementation is discussed. In real life, the most important thing about multipliers is power, 

the power consumption of multipliers need to be controlled as low as possible, and proper 

cooling system need to be designed to remove the heat generate from the multiplier. 

However, in this project, the improvement in fundamental arithmetic functionality and speed 

of the multiplier can outweigh the increased power usage. Below is a table that shows 

multiplication in math perspective.  

  
Multiplication table 

 

Multiplying A(N-bits) and B(M-bits) resulted in M*N bits 
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A shift and add multiplier architecture is demonstrated in Figure 3. The inputs include a start 

signal, clock, and multiplicand. It used the shift and add method to output the result with a 

stop signal. 

 

 

 

Figure 35 

 
 
 
These multipliers are simple and take up little area. Higher radix multipliers are quicker, 

although there is a higher power usage due to the larger register use and more complicated 

 
5 Deepak Bordiya, and Lalit Bandil, "Comparative Analysis Of Multipliers" International Journal of 
Engineering Research & Technology. Volume 2 Issue 9, September - 2013, pp. 1437– 1441. Accessed 
on: 8 June 2020. [Online]. Available at:  <https://www.ijert.org/research/comparative-analysis-of-
multipliers-serial-and-parallel-with-radix-based-on-booth-algoritham-IJERTV2IS90625.pdf> 
 

https://www.ijert.org/research/comparative-analysis-of-multipliers-serial-and-parallel-with-radix-based-on-booth-algoritham-IJERTV2IS90625.pdf
https://www.ijert.org/research/comparative-analysis-of-multipliers-serial-and-parallel-with-radix-based-on-booth-algoritham-IJERTV2IS90625.pdf


26 | P a g e  
 

logic. Implementing the example above using Verilog, a time analysis could be run to find out 

the propagation delay. If the multiplier with full-adder and logic gate was implemented, it 

would contain many adders and logic gate. The logic is the same with the multiplication table, 

each individual bit of the product came from multiple addition. The exact number of additions 

depends on the bit number. 

 

 

 

 

Figuer 4 http://www.ellab.physics.upatras.gr/~bakalis/Eudoxus/CSAM.html 

 
This image illustrates a hardware implementation for an 8 * 8-bit combinational multiplier, if 

N is the bits of the multiplicand, the delay should be 2N times the delay of the full adder. 

http://www.ellab.physics.upatras.gr/~bakalis/Eudoxus/CSAM.html
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The implementation could be done in Verilog, although this would be the function already 

implemented in Figure 5.

 

Figure 5 6 
 
 

Using the FPGA shown in Figure 6, the propagation delay would be around 10ns. 

 
Figure 6 6 

 
 

 
 
 
 
 
 
 
 

 
6 Gim P. Hom, Joe Steinmyer, Class Lecture, Topic: “Arithmetic Circuits & Multipliers”  6.111 
Introductory Digital Systems Laboratory, Massachusetts Institute of Technology, MA, Fall, 
2017.Avaiable at: <http://web.mit.edu/6.111/www/f2017/handouts/L08.pdf> 

http://web.mit.edu/6.111/www/f2017/handouts/L08.pdf
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Multiplier Type II Sequential Multiplier 

 

 

Figure 7 

 
 
After the combinational multiplier, the sequential multiplier (Figure 7) was also commonly 

used in early hardware design. It only contains one full adder, four registers in total. A stored 

a M-bits multiplier, B store a N-bits multiplicand, P is N bit register and C is a single bit register. 

P and C had initial value of 0.  To illustrate the multiple process, an example of 11*11 has 

been done in Figure 8. 

 

Figure 8 
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It was doing implicit shifting and adding operation, where P/B are shifting registers, they 

always shifted right by one each cycle. The mathematical explanation is shown in Figure 9. 

The shifting operation is determined if shifting and adding both needed to be done or just 

shifting. The addition step is added at the MSB side, which means adding multiplicand*2^N, 

N is the number of bits of the multiplier. However, at the end of the multiplication, the value 

stored in P/B is shifted to right by N bits. The shifting cancels out the effect of adding to the 

MSB.    

 

 

Figure 9 

Multiplier Type III: Multiplier with Radix 4 and Radix 8.  

 

The radix determines the addition choices in this case. In radix 2 multiplier, the only choice of 

addition was to add the multiplicand or not add the multiplicand. In radix 4, the choice for 

addition was not only 1 or 0 but 2*multiplicand and 3*multiplicand. In radix 8 the choices are 

even more. In radix 2 multiplier 16 additions need to be done for 16 bits multiplication, but 

with radix 4, only 8 additions need to be done and with Radix 8 it is 4 addition. Normally each 

addition takes one cycle, hence the number of cycles required could be reduced by increasing 

the Radix. 

 

For Radix 4 multiplier, Figure 10 in Appendix, the shifting and adding method has also been 

used, the multiple of the multiplicand have been pre-computed before the additions.  Instead 
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of shifting one bit to the right per cycle, 2 bits were shifted in Radix4 multiplier. The product 

of this 2 bits number and the multiplicand was added to with the product registers which is 

the left side to the register B, however it was shifted to the LSB at the end of the multiplication. 

So, the MSB partial product was not shifted because it is added at the end without any further 

shifting. Comparing to the normal Radix 2 multiplier, the Radix 4 take 9 additions, one of them 

was pre-computing the multiple of the multiplicand, it was more efficient than Radix2, the 

detailed tests regard to latency and power have been discussed in the optimisation section. 

In theory, higher radix multipliers have more power consumption and lower latency. 

 
The waveform simulation has proved that the cycles required for multiplication have been 
reduced. Figure 11. 

 

 

Figure 11 

 
 
Radix 8 multiplier has the similar structure, Figure 11, but instead of shifting 2 bits, 4 bits were 

shifted. Therefore, the number of additions had been reduced further. 

 

 

For the Radix 8 multiplier, more values needed to be pre-computed before the multiplication. 

However, the multiplication itself only took 4 additions. From the waveform simulation, 

Figure 12, the result would be available after 4 cycles, however the total number of additions 

of the Radix8 multiplier were 15 additions in total including 11 pre-computing additions. 

Clearly Radix 8 multipliers have larger propagation delay due to larger number of additions at 

the start compared to Radix 4 multipliers.  
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Figure 12 

To conclude, higher radix multiplier meant less additions during the multiplication, but more 

pre-computed values were required. In this case, radix 8 multiplier need to do 6 more 

additions for one multiplication compared to radix 4 multiplier. For a 16bits or 32bits word, 

Radix 4 multiplier would be efficient enough. The radix of the multiplier should be chosen 

according to the bit length of operands. For the combinational multiplier, it used the most 

adders but could compute the result with less cycles, and the propagation delay problem 

could be solved by changing the intermediate adders to be carry save adders, so the carry 

would be saved instead of added. This would reduce the propagation delay of adding the carry. 

The final adding stage of the combinational multiplier would involve adding the carries. For 

the sequential multiplier, it could not be improved and had to take 16 cycles, but it only 

needed one full adder to do the multiplication.  
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7 Benchmark tests 

7.1 Benchmark: Fibonacci numbers using recursion 
Assembly: 

 

Explanation: 
Phase One: Calling  

Loading the parameter n in to R1, and call the Fibonacci function. 
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Phase Two: Initializing variable y 
Assigning local variable y to R2 by letting R2 = 0. 

Phase Three: IF statement 
Comparing whether n is bigger than one. 

Phase Four: NOT Bigger 
Assigning variable y to 1 by letting R2 = 1 
Jump to the END phase  

Phase Five: Bigger 
Store all the values in this call to stack and call the Fibonacci (n-1) 
Restore all the values and move the value in the return register(R5) to variable y (R2) 
Store all the values in this call to stack again and call the Fibonacci (n-2) 
Restore all the values and adding the values in the return register and variable y, and storing 
the result back to variable y. 
Jump to END phase 

Phase Six: END 
Move the value of variable y (R2) to the return register (R5) 
Jump to the address stored in the link register 
 

Testing: 

Fib(2) 

107 cycles 

 

The final value of R5 (the return register) was 2, which was correct for fib(2)=2. 
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First section of Fib(2) 

 

The stack pointer R7 could clearly be seen decrementing as values are pushed into the stack 

in the screenshot above. R6 also updates as the link register.  

FIB(5)=8 
12.23 us (using 20 ns period clock) = 611 cycles 

 
 

See Appendix 10 for Fib simulations from fib(2) to fib(7). 
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Relationship between execution time (using 20 ns period clock) and parameter 

 

As the parameter was increased, the execution time increased exponentially. This was due to 

the use of a recursive implementation of the Fibonacci function, which required even more 

calls to itself as the parameter increases. This was an especially inefficient implementation of 

the function, and it would be interesting to see how a different implementation could be used 

to decrease execution time. 
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7.2 Benchmark: Pseudo-random integers with LCG 

 

Using linear congruential generator is one of the ways to generate pseudo- random integer, 

it takes three parameters a,b,N and one seed value Xn to generate the next value. The 

sequence generated by the generator is called a linear congruential sequence. The target of 

this research is to choose the suitable parameters that generate the longest sequence without 

repeating, so the sequence looks random.  Figure LCG shows three examples with fixed 

sequence cycle. 

Wikipedia diagram7 

Firstly, the generator took a seed input which means the output is related with the input, 

hence the largest possible length of the sequence is 2^N. In this case, N was fixed at 16 as it 

is the word length. Ideally the maximum length of the sequence is 65536.  

The first case is b= 0, a is a primitive element of 2^16, and assume 2^N is a prime number. 

The length of the sequence without repeating would be 2^16-1=65535. This special case is 

called “Lehmer random number generator”. However, 2^N is not a prime number, so this is 

not a possible case. When b=0, 2^N is a power of 2, these parameters are commonly used 

because it is convenient for binary representation. This form has maximum sequence length 

of 2^N/4 when a=3 or a=5 and the initial seed input Xn is odd. The final case is when b does 

not equal zero.  

 
7 Wikipedia, Linear Congruential generator.[online] available at: 

<https://en.wikipedia.org/wiki/Linear_congruential_generator> 

https://en.wikipedia.org/wiki/Linear_congruential_generator
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According to Hull-Dobell Theorem8, if 

1. b and 2^N are relative prime, 

2. a-1 is divisible by all prime factor of 2^N 

3.a-1 is divisible by 4 if 2^N is divisible by 4 

 

The period of the sequence is equal to 2^N. 

Therefore, for this implementation if b=1, a=2^15+1=32769, N=16, in theory the sequence 

would have a length of 65536, which is much too large for the execution time of the Quartus 

simulation 

 

Assembly: 

 

 
8 Linear Congruential Generator I section two, Cornell Department of Mathematics. [online] 

available at: 
<http://pi.math.cornell.edu/~mec/Winter2009/Luo/Linear%20Congruential%20Generator/linear%2
0congruential%20gen1.html> 
 

http://pi.math.cornell.edu/~mec/Winter2009/Luo/Linear%20Congruential%20Generator/linear%20congruential%20gen1.html
http://pi.math.cornell.edu/~mec/Winter2009/Luo/Linear%20Congruential%20Generator/linear%20congruential%20gen1.html
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The value stored in R0 is initialised with 0. Firstly, load R1 with 25385 as the "a" value, load 

R2 with 3 as the "b" value, load R3 with 8 as the "n" value. R4 stores "y" value, R5 stores "sum" 

value. "Y" and "sum" are initialised with 0 as well. Then write the stop address to R0, compare 

the value 0 and the “n” value stores in R3, if they are equal, jump to the END ‘address 

otherwise R4 multiplies with R1, the “y” and the “a” value. During the multiplication, write 

value 1 to R0. Once the multiplication is done, the least significant 16 bits have been stored 

in R4. Then the value stores in R5 is added with R4 which represent adding y value to the sum. 

After that, the n value is subtracted by 1 and jump back to the start of the loop where the 

comparison between n value and 0 has been done. The loop continues and at the end of each 

loop n value is subtracted by 1. Once the n value is one, the conditional jump will jump to the 

stop address and the test code for pseudo random integer has finished. The final random 

integer is stored at R5. 

Testing: 

Using "typical" parameters in overview 
A=25385=0x6329, b=3, n=8 
213 cycles 
Execution time: 4.27 us 
Pattern: 0, 3, 10625, 34994, 47758, 51917, 49639, 25364, 39500 (does not seem to repeat) 
  

 
  

The outputs were changed to the radix unsigned integer to read the values more easily.  



39 | P a g e  
 

 

Even when increasing the length of the loop, the integers never seemed to repeat due to the 

small execution time of the Quartus simulation. 

Execution time scaled linearly as the length of the for loop increased, as the for loop just 

executed the corresponding number of times, where each loop required the same amount of 

time. 

7.3 Benchmark: Traverse linked list to find an item 
Assembly: 

 

Note that to change the x value (value being searched for in the list), the first instruction 

needed to be changed to this x value. The above code looked for the number 7 in the list. 

First the target value is loaded in R0 and stored in R1 in the next instruction, then load R0 with 

the beginning address of the loop and stores the address in R3 in the next instruction. After 

that load R0 with the end address of the loop and store the end address in R4 in the next 

instruction. After all the initialisation, R0 is loaded with the head pointer which contain the 

address of the first value, the value is compared with the target value by subtraction method. 

If it is the target value, jump to the end address and stored the pointer in R5, the test is 

finished. If it is not the target value, loading R0 with pointer pointing to the next value in the 

list and jump back to the beginning of the loop, this loop will stop when it iterates through 

the whole list or when the target value has been found. NULL was defined as the memory 
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address 0. The item was found if R5 (register 5) returns the address of the item with value x. 

If it remains at 0, the item was not found in the list. 

Data memory: 

 

This test data was used for the simulations (the list continues on the right side).  One item in 

the linked list consisted of the value of the item and the value in the next memory address is 

the memory address pointing to the next item in the linked list (each item’s value was 

highlighted in the image). The memory location storing a memory address acted like a sort of 

pointer. In this example, memory address 1 is the head item, which had a value of 1 and the 

next item in the list is at the memory address 3 (as the value in memory address 1+1 is 3). The 

length of this list was 20 items, although the actual length of the simulation depended on 

what value was being searched for in the list, as once it was found, the simulation stopped. 

The length was tested for 7, 10, 15, and 20 items (all simulation results for “find in list” 

benchmark found in Appendix 12). 
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Testing: 

Length 10 (typical): 
To test a length 10 linked list, the first instruction needed to be changed to 000A, as the linked list 
values are in numerical order, and thus it would stop at 10 items when 0xA or 10 is found as the 
value in the tenth item. 
149 cycles 
2.99 us 
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Relationship between execution time and linked list size 

 

Execution time seemed to increase linearly with linked list size as each item took up the same amount 

of time. It would be interesting to investigate quicker search algorithms, possibly using binary search 

trees.  
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8 Optimisation  

8.1 Basic CPU evaluation 
The speed, power and area were measured using the full compilation on Quartus. This evaluation is 

for the unpipelined CPU. 

 

To find the geometric mean time, a parameter was fixed for each benchmark tests that obtained 

similar execution times between each test. This allowed comparison between geometric mean times. 

FIB(3) = 3 
191 cycles = 3.149 us 
  
LCG typical parameters A=25385=0x6329, b=3, n=8 
213 cycles = 3.512 us 
  
Length 15 linked list: 
219 cycles = 3.611 us 
  
Geometric mean time = 3.42 us 
 
Analysis of CPU block: 

Timing analysis: 
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The largest propagation delay in the CPU_block bdf was between the instruction and data memories. 

In the CPU, there is a large propagation delay due to the entire loop being completed in one cycle and 

being required for the next cycle. One way to decrease this propagation delay is to add pipelining 

stages. A register could be added at the output of the data RAM so that the output is ready at the next 

cycle. This would involve changes to the state machine so that all the stages have a value in each 

register, and then this could be pipelined so that each stage has a very log propagation delay, thus 

increasing the max clock frequency (discussed further in Extension).  

 

Power: 
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Area: 

 
Power and area were more difficult to change than speed, although they were taken into 

account when choosing the multiplier to carry out multiplication. 

8.2 Choosing the multiplier 
To maximise the clock frequency of the CPU, the propagation delay needed to be minimised. 

Therefore, the power and latency analysis were done with the Radix 2 multiplier (Figure 

analysis Radix 2 Appendix 8) and the Radix 4 multiplier(Figure analysis Radix 4 Appendix 7). 

After running the full compilation with model Cyclone IV E, the TimeQuest Timing Analyzer 

showed the time analysis.  
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The set-up slack in time analysis means the difference between the data required time and 

the data arrival time. For the radix 4 multiplier, the worst-case slack is 0.395, for the radix 2 

multiplier is 0.677. The radix 4 had half the cycles, 0.395*2>0.677. The result showed that the 

propagation delay for radix 4 multiplier was less compared to radix 2. The positive slack in 

each simulation meant there were still some margin for both multipliers to increase the clock 

frequency further.  

The dynamic power is the power consumed when inputs are active, the static power is the 

power consumption the inputs are kept constant, it is usually caused by DFF. For the Radix 2 

multiplier, total power dissipation was 97.79mV, core dynamic thermal power dissipation was 

6.19mW, and core static thermal power dissipation was 42.86mW. For Radix 4 multiplier, 

total power dissipation was 102.71mW, core dynamic thermal power dissipation was 7.42mW, 

and core static thermal power dissipation was 42.88mW. The result makes perfect sense as 

the high dynamic power dissipation for radix 4 was because it shifted more bits in the same 

amount of time. The similar static power was because the same number of additions had been 

done in the same amount of time. Even the Radix 4 multiplier had a slightly larger total power 

dissipation, however it could do double the work that radix could do with the same amount 

of time. Hence, the radix 4 multiplier was the most efficient choice.  

 

8.3 Pipelining 
Pipelining9 involved creating a state machine that fetched the next instruction and executed 

the current instruction during the same cycle. This approximately halved the number of cycles 

required as fetch and exec1 happen at the same time. 

Pipelined state machine: 

 

 
9 Torsten Grust, Class Lecture, Topic "Pipelining" Database Systems and Modern CPU Architecture, 
Eberhard Karls University of Tübingen, German, 2009. Available at: <https://db.inf.uni-
tuebingen.de/staticfiles/teaching/ss09/dbcpu/dbms-cpu-2.pdf> 

https://db.inf.uni-tuebingen.de/staticfiles/teaching/ss09/dbcpu/dbms-cpu-2.pdf
https://db.inf.uni-tuebingen.de/staticfiles/teaching/ss09/dbcpu/dbms-cpu-2.pdf
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The new state machine executes FETCH only for the first cycle and then fetches the next 

instruction while executing the current instruction during EXEC1.  

 

A reset pin was required for the DFF, so that FETCH starts at 1 at the beginning. 

 

Pipeline hardware (see Appendix 2): 

To increase PC during the first cycle, an add_one block was used for all instructions (adds one 

to output of PC). A MUX chose between PC+1 and PC depending on add_sel, so it should 

always increase by 1 other than for stop instructions, where it should not increase again. 

Otherwise, the PC would count above the STP instruction and skip it. 
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Hardware: 

 

 Pipelined control signals logic 

 

For pipelining, JMP and BL should not increase the PC, and they should not use PC+1, as this 

skips the address being jumped to. Write_next_stp (the delay for write instructions after an 

LDR) also had the same logic as it should stop the PC from counting during this cycle. BL also 

required an additional MUX at the input of the instruction memory so that the jump address 

updates during the same cycle as the BL instruction being executed, so that the next 

instruction already executes the instruction that was jumped to as it should be available at 

the memory output. 
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Improved Multiple LDR instructions Test: 

Pipelined: 

 

Unpipelined: 
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Clearly the pipelined version was able to execute the LDR instructions in one cycle rather than 

two cycles for the unpipelined version. This test was already optimised due to the LDR 

implementation allowing for LDR instructions to be carried out in parallel, but the pipelining 

allowed for even better optimisation in terms of number of cycles. 

Multiplication while pipelining 

More instructions had to be added after MUL instruction so that 9 instructions or cycles pass 

to give the multiplier time to obtain the output. This could not be decreased using pipelining, 

which meant that the LCG benchmark (the one using multiplication) did not have as great an 

improvement in execution time compared to the other benchmarks, as the majority of the 

time was taken up by the multiplication. While the ability to carry out instructions in parallel 

was possible, this could not be fully taken advantage of for this specific benchmark as not 

many instructions could be executed in parallel that would actually lead to improved 

efficiency. 

Pipelined CPU benchmark tests (using fixed parameters for comparison) 

Pipelined: FIB(3) = 3 
106 cycles 
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Pipelined: LCG with typical parameters: 
A=25385=0x6329, b=3, n=8 
163 cycles 
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Pipelined: Length 15 linked list search: 

126 cycles 

 
Each of the tests were clearly executed in less cycles. It was approximately halved from the 

unpipelined version, other than the LCG due to multiplication causing the same delay. 

Pipelined compilation 

 

Fmax increased compared to the unpipelined CPU from 60 MHz to 63 MHz.   

Geometric Mean Time (pipelined) = 2.047 microseconds 

This was an increase from 3.42 microseconds. It is not exactly halved due to the long delay 

that remains due to the multiplier block of 9 cycles. This took up the majority of the execution 

time for the LCG benchmark. 

Reg_Alu compilation : 
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By compiling this bdf, the paths that have the greatest propagation delay could be found. 

 

The write_next register seemed to cause significant delay to get to the register file, due to the 

large amount of combinational logic due to logic gates and MUXes. This was a bottleneck to 

the maximum clock frequency. Pipeline stages could have been used to store the value at 

intermediate stages in a register and change the state machine so that each stage or cycle 

only involves little propagation delay. This would increase the maximum clock frequency, but 

also increase the setup time is takes to fully take advantage of this pipeline. These pipeline 

stage registers could be added at the output of the data RAM as this seemed to also introduce 

significant slack, as well as between the register file and ALU. 

 

9 Conclusion/Extension 
Making the CPU was very interesting as it built off the work done during term 2 very well. One 

could see the CPU becoming increasingly advanced as it incorporated instructions from 

modern ISAs and computer architectures. The CPU met the benchmark tests that were 

written in C++, so the link between programming and computer architecture could be 

explored. Meeting the design goal of creating a general CPU was satisfying as there are many 

different applications that can be tested.  

There are several ways for the CPU to improve and to investigate further if there was more 

time. Firstly, in terms of the memory blocks, a dual port RAM could be tested, as this would 
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probably be very similar to the current setup, while also being more compact. To make the 

CPU more general, a signed multiplier could be implemented with slightly more hardware to 

multiply signed numbers. More complex implementations of a multiplier could also be 

investigated to attempt to decrease the number of cycles it takes. Different implementations 

of the Fibonacci benchmark could also be tested, as the results showed that recursion is very 

inefficient execution time scales exponentially with the input parameter.  An assembler for 

the invented ISA could also be made to make it easier to convert from assembly to machine 

code. 

In terms of optimisation, pipeline stages would have been useful to limit the effect of 

propagation delay on the max clock frequency. It would be interesting to investigate how 

much the maximum clock frequency would improve due to the added intermediate stages 

lowering the propagation delay and how this would improve the execution times of the 

benchmarks.  

10 Link to Github 
https://github.com/alexpondaven/CPU 

Send login to ap2619@ic.ac.uk for permission to Github.  

https://github.com/alexpondaven/CPU
mailto:ap2619@ic.ac.uk
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12 Appendix 
Appendix 1: Unpipelined ALU1 
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Appendix 2: Pipelined ALU1 differences 

 

Appendix 3: Meeting notes 

Date Discussion Alex Peter Jason 

25/5 • Discussed stack and shared 
research on AVR and SPARC 

• Went through fibonacci 
benchmark 
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26/6 • Discussed Jason's assembly 
code for fib benchmark 

• Went over stacks 
• Discussed number of 

registers and instruction 
format 
o Decided it is best to 

decide this once all 
benchmarks have 
been turned into 
assembly and we 
know what 
instructions will be 
needed 

Look at next 
benchmarks and see 
what instructions we 
may need and 
convert to assembly 

Research 
multiplication 
methods 

Make assembly 
more efficient 
and think of 
register to use 

27/5 • Went over assembly code 
for LCG and linked list 
benchmarks 

• Discussed multiplication 
methods 

• Made a list of instructions 
using benchmarks 

Think of 
implementation of 
instructions (DECA 
oral as well) 

Continue 
multiplication 
method 
research 

Reduce number 
of instructions 
used in fib 

29/5 • Went through Jason's in 
detail implementation of 
stack instructions - may 
need new instructions 

• Made plan of CPU - went 
through each instruction to 
determine how it may be 
implemented - not sure 
about branch (BL) and 
LDMB, STMB instructions for 
fib 

Branch and link 
hardware 
implementation 

Research 
multiply 
methods 

LDMB (POP) 
implementation 

31/5 • Discussed LDMFD instruction 
for loading and increasing 
stack pointer - this could be 
done with a bit in instruction 
word specifying if stack 
pointer should be changed 

• Discussed instruction word 
format 

• Got stuck on trying to make 
LDR one cycle - not sure if 
this is possible 

Look at different 
instruction formats 
(e.g. Thumb) and 
determine 
instruction formats 

Force block 
and 
multiplication 
in ALU 

LDR 
implementation 
in different ISAs 

5/6 • Discussed multiplication - 
number of cycles 
o Instruction or 

subroutine? 

Testing LDR Parallel 
multiplier 
research 

ISA table and 
Branch logic 
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6/6 • Discussed parallel multiplier 
ideas 
o Shift/add 
o Parallel - only helps 

with multiple 
consecutive multiplies 

• How will we store the 2 
registers afterwards 
o 2 registers only for 

multiply result 

      

7/6 • Github merging problems 
• Peter made progress on 

multiply report 
• Discussed how we could split 

up testing work later after 
github is fixed 
  

Fix github and finish 
testing all 
instructions 

Implement 
synchronous 
multiplier 

Report structure 
and revise 
hardware 
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Figure 1 
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Appendix 4 

 
Figure 2 

Appendix 5 

 

Figure 10 
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Appendix 6 

 

 

Figure 11 
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Appendix 7 
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Figure analysis Radix 4 
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Appendix 8 
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Figure analysis Radix 2 
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Appendix 9 

The ROM implementation had a slightly higher Fmax than using RAM when testing the 

unpipelined versions as seen below. 

Instruction ROM implementation 

 

  

 Instruction RAM implementation: 

 

  

Appendix 10: Fibonacci results 

Fib(2) = 2 
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107 cycles 
2.15 us 
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FIB(3) = 3 
191 cycles 
3.83us 
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FIB(4)=5 
359 cycles 
7.19 us 

 
  
  
FIB(5)=8 
611 cycles 
12.23 us 
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FIB(6)=13 
1031 cycles 
20.63 us 
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FIB(7)=21 
1703 cycles 
34.07 us 

 
  
Appendix 11: Pseudo-random integer generator simulations 
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Using "typical" parameters in overview 
A=25385=0x6329, b=3, n=8 
213 cycles 
Execution time: 4.27 us 
Pattern: 0, 3, 10625, 34994, 47758, 51917, 49639, 25364, 39500 (does not seem to repeat) 
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Using smaller values and longer loop, see if it repeats: 
A=0x500, b=1, n=0x10 
421 cycles 
Doubled loop length, execution time doubled: 8.43 us  

 
• Series still does not seem to repeat 

  
  
Keeping big and longer loop: 
0x6329, b=9, n=0x20 
837 cycles 
Execution time: 16.75 us 
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Appendix 12: “Find value in list” Benchmark results 
Length 7: 
107 cycles 
2.15 us 
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Length 10 (typical): 
149 cycles 
2.99 us 
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Length 15: 
219 cycles 
4.39 us 
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Length 20: 
289 cycles 
5.79 us 

 
  
Appendix 13: Instruction testing process 

LDI test 
Instruction mem: 

LDI 1 0001 

STP B000 
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LDR 
  
LDR (no offset) test: 
  
Data memory: 
0x0004 
0x00AB 
  
Instruction mem: 

LDI 0x1 0001 

LDR 0 0 R1 R0 1008 

LDI 0x0 0000 

STP B000 

• Note - does not work yet - implemented later 
•   

 
• Was loading 0x4 into R1 
• Forgot that wen for register file needs to be off for exec1 of ldr instruction 

 
• Removed ldi and ldmfd from wen and added the OR gate so that it writes when the 

write_next bit in status bus is active even when wenout is off 
  
Another issue: 
• Daddr remains at 0 
• Daddr pin was not named 
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• During STP, R0 is written to since the initial values in memory is 0000, which is LDI 0000, 

which loads R0 with 0000 
• Need to add a STP bit in status register to say that the program has stopped and wenout in 

ALU should be off 
• After doing this, wenout was stuck at 0 
• This is because stp_en is initialised to 1 

• Should expect 0 as register is initialised to 0, so initial status[5] should be 0 
  
Status register: 
• Do we need to have separate registers so that I can individually enable writing to the 

different bit fields - actually maybe not as it needs to be returned to 0 if it is done 

 
• Could not see stp_en as bit size was not right in simulation 
• It is always at 1 

  
  
Stp_en is actually not needed as instr stays ta B000, for some reason thought it went to 0000 
• But wenout is off while R0 is changing??? 
• Status[3] is on, which turns on wenout 
• Need it to turn off one cycle afterwards 
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• Don’t need stp_en stuff and we need to separate status register to cin register and 
write_next register 

  

 
  
Simulation again: 

 
• Same problem, wen is on with stp as write_next_out[3] is on and is not switched off after 

loading in next cycle 
  
Issue was that write_next_en was only on for ldi and ldmfd, when it should always be on during 
exec1, so that it can actually go back to 0 

 
  
Simulation working: 
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• Realised this doesn't work as it will be pipelined - can't actually LDI after LDR - can't write to 

registers as there is a conflict for what to have as port1addr 
Test STP right after LDR 
Data memory: 
0x0004 
0x00AB 
  
Instruction mem: 

LDI 0x1 0001 

LDR 0 0 R1 R0 1008 

STP B000 

  
Issue: 

 
• R0 is changing since wen is enabled while daddr is 0 during STP exec1 
• Port1addr needs to come from status register, not instruction word - forgot to actually take 

status register address and put it into port1addr -> enabled if status[3] is enabled 
• Added MUX: 
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Old simulation: 
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• Port1addr is 1 during ldr instruction rather than one cycle after when dout has updated 
  

 
  

• Status is not storing 1001 
• Storing 1000 so it loads to R0 (sees register address as 0) 

• It was taking Rs into write_next rather than Rd address, corrected: 

 
Working; 

 
• R1 loaded with 0x00AB or mem[1] and R0 remains at 1 

  
Test two LDR instructions after each other 
• Works since the first cycle of the second LDR does not write to registers 

Data memory: 
0x0004 
0x00AB 
  
Instruction mem: 

LDI 0x1 0001 

LDR 0 0 R1 R0 1008 

LDR 0 0 R2 R0 1010 

STP B000 
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Issue: 

 
• If the next instruction is an LDR, need to make sure that it does not reset write_next_flag to 

0 as seen above 

 
  
  
Working: 
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Test multiple LDR instructions 
Data memory: 
0x0004 
0x0002 
0x00AB 
  
Instruction mem: 

LDI 0x1 0001 

LDR 0 0 R1 R0 1008 

LDR 0 0 R2 R0 1010 

LDR 0 0 R3 R2 101A 

STP B000 

0001        1008        1010        101A        B000         
Works: 

 
  
Test positive offset LDR 
Data memory: 
0x0001 
0x002 
0x003 
0x006 
0x004 
  
Instruction mem: 

LDR 0 1 R1 R0 1048  
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LDR 0 2 R2 R0 1090 

LDR 0 2 R3 R1 1099 

STP B000 

  
Working: 

 
  
  
Test negative offset LDR 
Data memory: 
0x0002 
0x003 
0x004 
0x005 
0x006 
  
Instruction mem: 
  

Instruction Machine code Action 

LDI 0x4 0004 R0 = 0x0004 

LDR 1 1 R1 R0 1848  R1 = mem[R0-1] = 0x0005 

LDR 1 2 R2 R0 1890 R2 = mem[R0-2] = 0x0004 

LDR 1 2 R3 R1 1899 R3 = mem[R1-2] = 0x0005 

STP B000   

  
Working: 
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• Can't write register after LDR, can only LDR, STR, JMP, STMFD and STP 
• What if must write register after LDR, how to wait? 

• Messy: Could have 2 separate registers for stack and link register to write at the same 
time - may be more messy 

• Hacky: have a JMP instruction to next PC value to basically do nothing or STR a value 
in memory 

• Best?: Have logic that says if when write_next_status[3] is on and the current 
instruction is a write instruction, PC stays at the current instruction 
▪ Can add input to decoder that stops pc_cnt_en just like stp 
▪ I believe the current order of MUXes will make LDR writing to register take 

priority over LDI for example 
Implementation: 
ALU: 

 
Decoder: 

 
  
Test LDR and then LDI 
Data memory: 
0x0004 
0x00AB 
  
Instruction mem: 
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LDI 0x1 0001 

LDR 0 0 R1 R0 1008 

LDI 0x0 0000 

STP B000 

  
Issue: 

 
• R1 loads 0 

• When port1addr is still at 1, ldi has started already  
• should make sure when write_next_stp is on, ldi_sel is off 
• Also changed ldi_sel so it is in alu - makes more sense 

  
Working: 

 
  
Test Mov after LDR 
Data memory: 
0x0004 
0x00AB 
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Instruction mem: 

LDI 0x1 0001 

LDR 0 0 R1 R0 1008 

MOV 0 0 0 R2 R0 3010 

STP B000 

  
• Added register file din as output 

 
  

• Need a way to de-activate the current instruction from changing the  
• Din should not be changed while port1addr is still at 1 

 
  

• Din_sel should still select from din even though mov has started if the write_next_stp is enabled 
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Working: 

 
  
  

  
STR 
  
STR (no offset) test: 
  
Data mem: 
0x0 
0x2 
  
Instruction mem: 

Instruction Machine code Action 

LDI 0x1 0001 R0 = 0x1 

LDR 0 0 R1 R0 1008 R1 = mem[R0] = 0x2 

LDI 0x0 0000 R0 = 0x0 

STR 0 0 R1 R0 2008 Mem[R0] = mem[0x0] = R1 = 0x2 

LDR 0 0 R2 R0 1010 R2 = mem[R0] = 0x2 

STP B000   

 - CANT LDI AFTER LDR 
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Issue 
• Need to add STR to also change daddr 

  
Working: 

 
  
  
  
  

MOV 
  
  

 
• Need to actually write carry ff during all mov instructions 

• "No shift" writes 0 
• LSL writes MSB 
• Shift right writes LSB 

 
  
Test: 
Data mem: 
0xFFF0 
  
Instruction mem: 

Instruction Machine code Action 

LDI 0xF0 00F0 R0 = 0xF0 

MOV 0 0 0 R1 R0 3008 R1 = R0 = 0x0F0 

MOV 1 1 0 R2 R0 3610 R2 = R0 + 1 = 1 0xF1 
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MOV 0 1 1 R3 R0 3258 R3 = LSL R0 = 0x1E0 

MOV 1 1 1 R4 R0 3660 R4 = 0x1E1 

MOV 0 1 2 R5 R0 32A8 R5 = LSR R0 = 0x78 

LDI 0 0000 R0=0 

LDR 0 0 R6 R0 1030 R6 = 0xFFF0 

MOV 3 1 2 R6 R6 3EB6 R6 = ASR 0xFFF0 = 0xFFF8 

STP B000   

  
00F0        3008        3610        3258        3660        32A8        0000        1030 
3EB6        B000         
  
Working: 

 
  
  

JMP 
  

• As the conditions for jump need to determine if sload is loaded, the decision was made to put the 
entire decoder in the  ALU 
• This makes it easier and less messy, so multiple signals do not need to leave each block and 

result in longer time to compile and test 
  
JMP ALU logic: 
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• Did not work - pc_sload and pc_cnt_en were undefined during exec1 

  
JMP test 
  
Instruction mem: 

PC Instruction Machine code Action 

0 LDI 0x1 0001 R0=0x1 

1 MOV 0 0 0 R1 R0 3008 R1 = R0 = 0x1 

2 LDI 0x5 0005 R0 = 0x5 

3 JMP 0 0 R1 R0 4008 JMP 5 // set PC=5 

4 LDI 0xFFF 0FFF R0=0xFFF // JMP not working 

5 LDI 0x8 0008 R0 = 0x8 

6 JMP 1 1 R1 R0 4448 JEQ 8 // set PC=8 

7 LDI 0xFFF 0FFF R0=0xFFF // JEQ not working 

8 LDI 0xB 000B R0=0xB 

9 JMP 2 2 R1 R0 4888 JMI 11 // Set PC=11 

10 LDI 0xFFF 0FFF R0=0xFFF // JMI not working 

11 LDI 0xE 000E R0=0xE 

12 JMP 3 0 R1 R0 4C08 JMB 14 // Set PC=14 

13 LDI 0xFFF 0FFF R0 = 0xFFF // JMB not working 

14 STP B000   

0001        3008        0005        4008        0FFF        0008        4448        0FFF 
000B        4888        0FFF        000E        4C08        0FFF        B000         
  
Working: 
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ADD/SUB 
  
Multi-register Add/Sub test (from ARMish testing) 
Instruction mem: 

Instruction Machine code Action 

SUB 0 1 R1 R3 620B   

SUB 2 1 R0 R2 6A02 R0:R1 := R0:R1 - R2:R3 - 1 

ADD 1 1 R1 R3 560B   

ADD 2 1 R0 R2 5A02 R0:R1 := R0:R1 + R2:R3 + 1 

LDI 0x1 0001 R0=0x1 

MOV 0 0 R3 R0 3018 R3=0x1 

MOV 0 0 R2 R0 3010 R2=0x1 

SUB 1 1 R1 R3 660B   

SUB 2 1 R0 R2 6A02 R0:R1 := R0:R1 - R2:R3 

ADD 0 1 R1 R3 520B   

ADD 2 1 R0 R2 5A02 R0:R1 := R0:R1 + R2:R3 

STP B000   

  
Working: 
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MUL 
  

Instruction Machine code Action 

LDI 0x3 0003   

MOV R1 R0 3008   

LDI 0x4 0004   

MOV R2 R0 3010   

MUL R2 R1 7011   

LDI 0x0 0000   

LDI 0x0     

LDI 0x0     

LDI 0x0     

LDI 0x0     

LDI 0x0     

LDI 0x0     

LDI 0x0     

LDI 0x0     

STP B000   

  
• Need to make sure regfile is not written during MUL 

  
Working: 
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Largest Multiplication: 
Data RAM: 
0xFFFF 
  

Instruction Machine code Action 

LDR 0 0 R1 R0 1008   

MUL R1 R1 7009   

LDI 0x0 0000   

LDI 0x0     

LDI 0x0     

LDI 0x0     

LDI 0x0     

LDI 0x0     

LDI 0x0     

LDI 0x0     

LDI 0x0     

STP B000   
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Storing MSB and LSB into regfile 

Instruction Machine code Action 

LDR 0 0 R1 R0 1008   

MUL R1 R1 7009 R1 * R1 

LDI 0x0 0000   

LDI 0x0     

LDI 0x0     

LDI 0x0     

LDI 0x0     

LDI 0x0     

LDI 0x0     

LDI 0x0     

MOV 0 0 3 R3 0 30D8 R3 = LSBs of product 

MOV 0 0 3 R4 1 30E1 R4 = MSBs of product 

STP B000   

1008        7009        0000        0000        0000        0000        0000        0000 
0000        0000        30D8        30E1        B000         
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Testing add and multiply: 

Instruction Machine code Action 

LDR 0 0 R1 R0 1008   

MUL R1 R1 7009 R1 * R1 

LDI 0x1 0001   

MOV R3 R0 3018   

LDI 0x1 0001   

MOV R4 R0 3020   

LDI 0x0 0000   

LDI 0x0     

LDI 0x0     

LDI 0x0     

MOV 0 0 3 R3 0 30D8 R3 = LSBs of product+1 

MOV 0 0 3 R4 1 30E1 R4 = MSBs of product+2 

STP B000   

1008        7009        0001        3018        0001        3020        0000        0000 
0000        0000        30D8        30E1        B000         
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BL 
  
Test if link register loading works 
Instruction mem: 

PC Instruction Machine code Action 

0 BL 2 8002 For now just sets R6=0x1 

1 STP B000   

  
Working: 
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Test if full BL works 
  

PC Instruction Machine code Action 

0 BL 2 8002 For now just sets R6=0x1 

1 STP B000   

2 LDI 0xFFF 0FFF R0=0xFFF 

3 JMP 0 0 R0 R6 4006 PC=0x1 

  
  
Working: 
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STACK 
  
LDMFD and STMFD 
  
Test: 

Instruction Machine code Action 

LDI 0x1 0001   

MOV R1 R0 3008 R1=0x1 

LDI 0x3 0003   

MOV R6 R0 3030 R6=0x3 

LDI 0x2 0002 R0=0x2 

PUSH R1 A00F / A039 PUSH 0x1 

PUSH R0 A007 / A038 PUSH 0x2 

PUSH R6 A037 / A03E PUSH 0x3 

POP R2 9017 R2=0x3 

POP R3  901F R3=0x2 

POP R4 9027 R4=0x1 

STP B000   

0001        3008        0003        3030        0002        A039        A038        A03E 
9017        901F        9027        B000         
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Issue: 

• Stack pointer is not changing 
  
• Rdin is rd-1 
• Also need to have wen during stmfd 

• We also need aluout to be selected for din 
• Thus, ldmfd instructions cannot be done in parallel like ldr as something is written every cycle 

  
  

• Now it is writing R6, instead of LDMFD and STMFD 
• Rdin should be  

  

 
  

• Stmfd works but not ldmfd 
• 2 ldmfd instructions do not work after each other as write_next_stp is stuck at 1 

  
Issue: 
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• STMFD works but in LDMFD, stack pointer is not updating 

  
  
Issue: 

 
  

• Works but the registers are rewritten to 0 as rdin becomes 0  
• This is because dout changes to 0 for the instructions that need to wait when write_next_stp is 

enabled 
• Daddr switches to 0 during fetch as aluout is reset 

  
• Saw that when write_next_flag is on, wen should be the inverse of wenout, so that it is not on in 

that last cycle where 0 is written is at daddr, so could use an XOR gate to carry out selective 
inversion 
• May cause problems when pipelining 
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• Added stp to wenout, this may cause problems for other instructions writing during stp - check 
later 
  
Working: 

 
Issue: loading 0 in because enabled stp in wrenout 

 
Added this - may help - temporary solution - may be different when pipelining 
  
Working: 

 
  
  
Test doing LDI after this to make sure it works after POP 

• Works with LDI 
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